(3 plus

User Guide

Copyright © 1985, 1986, 1987
Altera Corporation

A+PLUS User Guide
Version 5.0
Sepiember 1987 P25-02218-00

Changes are made periodically to the information contained in this manual.
These changes will be incorporated into subsequent editions.

Altera Corporation
3525 Monroe Street
Santa Clara, CA 95051
(408) 984-2800
TELEX: 888496

Copyright © 1985, 1986, 1987 Altera Corporation. All rights reserved.

No part of this manual may be copied or reproduced in any form or by any
means without the prior written permission of Altera Corporation.

A+PLUS, SAM+PLUS, LogicMap, Turbo-Bit, MacroMuncher, SAM, BUSTER,
EP310, EP320, EP600, EP610, EP900, EP910, EP1210, EP1800, EPB1400,
EPS444, and EPS448 are trademarks of Altera Corporation. LogiCaps is a
registered trademark of Altera. WordStar is a registered trademark of MicroPro
Corporation. Fido is a trademark of Tom Jennings. MS-DOS is a trademark of
Microsoft Corporation. FutureNet DASH is a trademark of FutureNet
Corporation. PC-CAPS and PC-LOGS are trademarks of Personal CAD
Systems, Inc. IBM Personal Computer is a registered trademark of
International Business Machines Corporation.

Read This First...

A+PLUS software documentation consists of two manuals:

A+PLUS User Guide
= A+PLUS Reference Guide

The A+PLUS User Guide provides installation and operation
information for the Altera Programmable Logic User System
(A+PLUS™)_ It is divided into three major parts: Introduction to
A+PLUS, Design Entry, and Simulation. If you are a first-time
user, you are advised to read Sections 1, 2, and 3 in the Introduction
to A+PLUS and then—depending on your choice of design entry
method—the appropriate section in Desigh Entry. Some of the
design entry packages are optional; therefore, they may not be part of
your version of the manual. Each of the design entry sections contains
a sample session(s) that guides you through the complete process of
programming an EPLD with A+PLUS. Simulation contains the
optional Functional Simulator. Following Sections 1 through 3, you will
find an Index covering the information in the A+PLUS User Guide,
A+PLUS Reference Guide, and the optional packages State
Machine Entry and Functional Simulator.

The A+PLUS Reference Guide contains detailed information on
Altera primitives, the Altera Design File format, APLUS and ADP
Menus, Utilization Reports, and A+PLUS messages. Also included are
several Appendixes, a Glossary, and an Index covering the information
in the A+PLUS User Guide, A+PLUS Reference Guide, State
Machine Entry, and Functional Simulator.

At the back of each manual, you will find a Customer Comment Form, a
Problem Report Card, and a Warranty Card.

s A+PLUS hardware and EPLD programming are
described in the LogicMap Il manual.

The A+PLUS User Guide contains the following sections:

I. Introduction to A+PLUS

Functional Description Gives an overview of A+PLUS that helps you to
determine which design entry method is most appropriate for your
particular application, and provides detailed information on the Altera
Design Processor.

Installation Lists system components and provides specific instructions
for installing A+PLUS software.

Getting Started Gives a brief introduction to the menus and menu
functions used in running A+PLUS software.

Il. Design Entry

Boolean Equation Entry Describes how to enter and process a design
exclusively with Boolean equations.

State Machine Entry (Option) Describes how to enter and process a
design with state machines.

Schematic Capture With FutureNet (Option) Describes how to enter a

schematic design with FutureNet's Schematic Designer and process it
with A+PLUS.

s> Altera’s schematic capture package, LogiCaps, is
described in the LogiCaps manual.

Ill. Simulation

Functional Simulator (Option) Explains how to simulate a design with
Altera’s Functional Simulator.

Index

The A+PLUS Reference Guide contains the following sections:

Altera Primitive Library Describes each Altera primitive in detail,
including block diagrams.

Altera Design File Format Explains the format of the Altera Design File.
A+PLUS and ADP Reference Provides detailed descriptions of the
APLUS Menu; the user-controllable and automatic functions of the
ADP; and DOS command line processing techniques.

Utilization Report Explains the Utilization Report and gives sample
reports for various Altera EPLDs.

A+PLUS Messages Lists all error, information, and warning messages
generated by A+PLUS and the ADP, their causes, and suggestions for
corrective action.

Appendix A Part-Specific Information

Appendix B Altera Design File-to-Logic Equation File Translation
Appendix C BNF Rules

Appendix D JEDEC Standard File Format

Appendix E Electronic Design Support Service

Appendix F Altera Primitive Library (Foldouts)

Glossary

Index

Manual Updates

Altera documentation is updated with Change Pages, Section
Reprints, and a READ.ME file.

Change Pages are issued for minor changes to the manual. New
information is identified with vertical change bars in the margins next to
the changed text. In addition, the date of issue is printed at the bottom
of each page.

Section Reprints are issued if a section requires a substantial
number of changes. The date of issue is indicated at the bottom of
each page.

A READ.ME File is provided on the A+PLUS INSTALL diskette.

This file contains information about recent changes to the A+PLUS
software that are not yet reflected in the manual.

vii

Printing Conventions

The following notational conventions are used throughout this manual:

Times Bold

Times Light
Helvetica Bold Italics

Helvetica Light Italics

I

viii

A+PLUS commands, prompts, and
messages

All types of user input

Primitive names

Key names (enclosed in < >'s)

Most screen and file output
References to Altera manual titles

References to sections within Altera
manuals

Indicates information that requires
special attention

Contents

Read This First iii
Manual Updates vii
Printing Conventions viii
I. Introduction to A+PLUS
Section 1: Functional Description
OVEBIVIBW.....coiiiiiiiiie et e et 1-2
Using A+PLUS Software..........cceeevieeeeiiicceiee e 1-5
DESIGN ENIY ...oviiiiiiiieetettte e e 1-6
Schematic Design ENtryooooiiiiiiiiiiiieiee e 1-6
(oY {07 o - T TR 1-6
FutureNet (DASH)ooooiiiiieeeeeee e 1-7
State Machine Entry......cccccovieiiiiiiei e, 1-7
Boolean Equation Entry...........coovviiiiiiiiiiiccece e 1-8
Netlist ENtry......oooooviiiiiieei e, 1-8
A+PLUS User Guide Contents-1

Section 1: Functional Description (Continued)

The Altera Design ProCessor..........ccouvvuieieeeeeeeeeiiiieee e 1-9
Flattener Moduleccooviiiiiiiiiiiiieeee e 1-9
Translator Module............ccccoe i, 1-9
Expander Module ...t 1-10

Logic Equation Filesooooiiiiiiiiiiiei e, 1-10
Minimizer Module............ooooiii 1-11
LEF Analyzer Module..........ccccoiiiiiiiiiiieeeee e, 1-11
Fitter Module.........cooeiiiiiiiiiiiie e, 1-11
Assembler Module..........ccoooiiiiiiiiiiiicicie e 1-12

Functional SIimulatorccoovoviiiiieee e 1-13

LogicMap 1. .o 1-14

Section 2: Installation

Stop — Read this first...........oooiiiiiieeeee e, 2-2
A+PLUS Distribution DiSKERESccevvveeieieeiieeee e 2-3
Backups of Altera Distribution Diskettesccovvvvuiiiiiiiienenennne.n. 2-8
A+PLUS INStallation........c..oieniiiiieiiec et 2-9
De-INStallation........ooiiiieiiiieie e 2-13

Section 3: Getting Started

APLUS MeNU ... e 3-2
ADP MENU ..o 3-4

Il. Design Entry

Boolean Equation Entry

Who Should Use Boolean Equation Entry?cocoiiiiiiiiiinnn BE-1
General Requirementsuuuuiiieeiriiiiice e, BE-2
Functional DescCriptioncoooiiiiiiiiiiiniiriie e BE-3
Sample SEeSSIONcoooiiiiiiiii e BE-5
The Sample CirCuit..........coocoeiiiiiiiii e, BE-5
Entering the Sample Design........cccevvvivriieiiiiiieiieieeeeeeeeeeee, BE-8
Altera Design File (ADF) Formatccccoevveviiiiiiiiieiiiecee e, BE-15
Header Section Requirementscooooiiiiiiiiiiiiiiiiiieneeeens BE-17

Contents-2 A+PLUS User Guide

Boolean Equation Entry (Continued)

Declarations Section Requirements..............cceveiiiiiiiniinnnn, BE-17
OPptioNs SECHONovieeiieeeer e BE-18
Part SECHONooeveec et BE-18
INPUtS SECtioN......ociii i BE-19
OULPULS SECHION......eiviieiiiiee et BE-20

Network Section Requirements...........ccoeeeveieeiiiiiiiiiinennnnnn. BE-20
Naming Conventionsc..uueeereeieimmiiiiien e BE-27

INPULS e BE-27

/0 (No Feedback).......cccuuuveiiiiiiiiiiiiiiiiiiecreeceeeeeee. BE-27

/0O (With Feedback)couvniieieeeieeeeniiiie e BE-27

/O (NO OUPUL) ...coeii e BE-28

Bus /O Primitives.........c..evevieeiiieienerieeeeieeeee e BE-28

Active Low Signals.......coooeviveeiiiiiiiiiiiee e BE-31
Equations Section Requirements.............cooooooiiiiiiiiin, BE-32
End Statement..........ooooiiviiieniiii BE-34
Additional GUIdEIINESciieieieiiee e BE-35

(Tables of contents for optional packages are included in each
individual package.)

lIl. Simulation

(Tables of contents for optional packages are included in each
individual package.)

Index

A+PLUS User Guide Contents-3

lllustrations

Figure

—
'
—

Nl})l\)
WN =

wmowmom @
mmrnrpmrnm
NoOahwWNN—

A+PLUS User Guide

Page
A+PLUS Block Diagram.........eeeeueceiiiiiiiiriiiiee e 1-4
Installation Main Menu.........c.coooiiiiiiiiii e, 2-10
Installation MenU........coooviiiiii i, 2-11
De-Installation Menucoooeiiiiiiiiiiinieeeee e, 2-13
Boolean Equation Entry..........cooeeeiiiiiiiiniiiiiieeeeee, BE-4
Sample CirCUitcccovviieeeeeeei e BE-4
ADF for the Sample Design (BEVDIS)c.ccounn..e. BE-11
Sample ADF BE-16
Sample ADF for EP1210........cooiiiiiiiiiiiiiiie BE-37
Sample ADF for EPB00..........coeviiiiiiiiiii e BE-38
Sample ADF for EP320........c.ooviiiiiiiiiiiie e BE-39

Contents-5

Tables

Table

Page
BE-1. Input, /O, and Bus /O Syntax.........ccccceeeeiiiiriinninnnnn.. BE-24
BE-2. Recommended Naming Conventions.............c........... BE-29

BE-3. ADF Legal Pin Name and Node Name Characters........ BE-30

A+PLUS User Guide Contents-7

SECTION 1

Functional
Description

This section gives an overview of the Altera Programmable Logic User
System (A+PLUS), followed by a detailed description of each
component of the A+PLUS software.

Functional Description 1-1

Overview

1-2

The Altera Programmable Logic User System (A+PLUS) is a
combination of software and hardware that allows circuit designers to
develop and implement custom logic circuits with Altera EPLDs.
A+PLUS provides an ideal desktop environment for EPLD design
entry, compilation, fitting, and programming.

The system contains A+PLUS software, a powerful design support tool
developed to meet the diverse needs of design engineers and to
match the continually expanding capabilities of Altera EPLDs. A+PLUS
hardware consists of a software-controlled Logic Programmer card and
an external Logic Programmer unit used for device programming.

Figure 1-1 shows a block diagram of A+PLUS.

A+PLUS software allows you to create a design with schematic capture,
state machine, Boolean equation, or netlist entry methods. Your
design file is converted (if necessary) to the Altera Design File (ADF)
format, and then processed into an industry-standard JEDEC file by the
Altera Design Processor (ADP). Finally, the LogicMap Il program
translates the JEDEC file into a working part via the Logic Programmer
unit.

A+PLUS software also provides the following features:

= Supports Altera EPLDs.

= Supports automatic part selection.

= Supports Altera’s Standard and TTL MacroFunction libraries.

n Supports user-defined MacroFunctions created with ADLIB.

" Applies sophisticated logic reduction algorithms to ensure
optimum resource utilization in your design.

. Automatically generates a Utilization Report showing how your
design will be implemented in the programmabile logic device.

. Supports functional simulation with Altera’s Functional Simulator.

" Translates a design into a working part with a fully automated

integration process, that makes pin assignments optional.

A+PLUS User Guide

A+PLUS software runs on an IBM PC XT, PC AT, or other compatible
computers capable of running MS-DOS Version 2.0 or greater. The
computer must have at least one floppy disk drive capable of reading
360-Kbyte, double-sided, double-density disks; a 10-Mbyte hard-disk
drive; 640 Kbytes of RAM memory; and one full-length expansion slot
for the Altera Logic Programmer card.

Functional Description 1-3

AS A+PLUS Design Entry

DASH
Schematic
Capture

Netlist
Entry

Boolean
uation
ntry

Altera Design Processor

Utilization
Report
* RPT

File .
Logic
Translator i Miniglizer

Expander

Simulation and Programming

Functional
! Simulator

Figure 1-1. A+PLUS Block Diagram

A+PLUS User Guide

Using A+PLUS Software

Before beginning design entry, you should familiarize yourself with the
Altera Primitive Library. This library contains input, basic gate, equation,
flipflop 1/0, and Bus 1/O symbols, which are the functional blocks used
in designing circuits with A+PLUS software. All Altera-supplied
primitives are described in detail in Altera Primitive Library in the
A+PLUS Reference Guide.

You should also have a general understanding of the functions of the
Altera Design Processor (ADP), whose components are described later
in this section. However, since the ADP controls the processing
sequence, minimal user interaction is required.

If you are a LogiCaps user, you should also familiarize yourself with the
Altera Standard MacroFunctions and the (optional) TTL
MacroFunctions. Altera MacroFunctions are high-level building blocks
that, when used with Altera primitives, can greatly increase design
productivity. The Altera MacroFunctions are described in the
LogiCaps and TTL MacroFunctions manuals.

Functional Description 1-5

Design Entry

A+PLUS software supports four design entry methods: schematic
entry, state machine entry, Boolean equation entry, and netlist entry.
You may choose whichever method best suits your design entry task.
However, you are not restricted to one entry format, but may use any
combination of entry methods, submitting multiple files to be compiled
into a single EPLD.

Each supported entry method ultimately creates a netlist file, called an
Altera Design File (ADF), which is the common entry format for the
A+PLUS software. The Altera Design Processor (ADP) then processes
the ADF and generates a JEDEC file for programming the EPLD.

Each design entry method is described below.

Schematic Design Entry

1-6

The schematic entry method is particularly suited for large random logic
functions. The optional graphic schematic capture modules—
LogiCaps and DASH—allow you to enter a schematic diagram directly
into the computer with the Altera Primitive Library.

A+PLUS software also supports design entry with PC-CAPS
(developed by Personal CAD Systems, Inc.) For additional information,
refer to Schematic Capture With P-CAD (Version 1.3).

LogiCaps

LogiCaps is a high-performance schematic capture package that has
been optimized for entering designs destined for Altera EPLDs. It
allows you to create a design with any symbol available in the Altera
Primitive Library and the Standard and TTL MacroFunction Libraries.
LogiCaps directly outputs an Altera Design File (with the extension
.ADF), which the Altera Design Processor uses to process the design
and generate a JEDEC file for programming the EPLD.

A+PLUS User Guide

LogiCaps offers a multitude of features, including dual editing
windows, multiple zoom levels, and printer interface software. (For
additional information, refer to the LogiCaps manual.)

FutureNet (DASH)

The DASH Schematic Designer is a hardware and software package
developed by FutureNet Corporation. DASH software allows you to
enter new designs, including arbitrary Boolean expressions, with Altera
Primitive Library symbols. It also enables you to edit existing designs
and make hard-copy printouts of your design

The DASH program outputs a pinlist that represents your design.
When the Altera Design Processor is invoked, the A+PLUS FutureNet
Pin List Converter automatically translates this list into an ADF. (For
further information, see Schematic Capture With FutureNet.)

State Machine Entry

The optional state machine entry method is suitable for users familiar
with describing the logical operation of state machine designs with
Boolean expressions, truth tables, state diagrams, and Algorithmic
State Machine charts.

Using any standard text editor, you generate a State Machine File
(SMF). Your SMF may contain Boolean and non-Boolean primitive
statements, Boolean equations, and truth tables. The A+PLUS State
Machine Converter (SMV) automatically translates this file into an Altera
Design File when the Altera Design Processor is invoked. (For further
information, see State Machine Entry.)

Functional Description 1-7

Boolean Equation Entry

Boolean Equation Entry is the traditional entry method for
programmable logic, and is appropriate for designing with low-density
EPLDs. The A+PLUS software supports Boolean equation entry
directly via the Altera Design File (ADF) format.

If you choose this entry method, you simply use a standard text editor
to type the Boolean equations into the Altera Design File format. The
final ADF is submitted to the Altera Design Processor, which processes
the design and generates a JEDEC file for programming the EPLD.
(For additional information, refer to Boolean Equation Entry.)

Netlist Entry

1-8

The A+PLUS software also supports netlist entry directly via the Altera
Design File (ADF) format.

Using a standard text editor, you can type a netlist corresponding to
your design into the ADF format. This entry method also permits circuit
designers to utilize netlist output (e.g., from workstations or schematic
capture packages that do not support the ADF netlist standard) that has
been adapted to the ADF format. The final ADF is submitted to the
Altera Design Processor, which processes the design and generates a
JEDEC file for programming the EPLD. (For further information on
requirements for ADF entry and the ADF format, refer to Boolean
Equation Entry in the A+PLUS User Guide and Altera Design File
Format in the A+PLUS Reference Guide.)

A+PLUS User Guide

The Altera Design Processor

Using Altera Design Files (ADFs) created with the schematic capture,
state machine, Boolean equation or netlist interfaces as input, the
Altera Design Processor (ADP) runs a series of modules whose final
output is a JEDEC file used for programming an Altera EPLD. (A+PLUS
converts design files created with the State Machine and DASH entry
methods into standard ADF format before design processing begins.)

This process is nearly fully automatic and requires minimal input from
the circuit designer.

During processing, the ADP sends error, information, and warning
messages both to the computer screen and an ADP.LOG file on disk.
(See A+PLUS Messages in the A+PLUS Reference Guide.)

Each component of the ADP is described below.

Flattener Module

The Flattener module checks each ADF submitted to the ADP for
MacroFunction statements, which it expands and replaces with
primitive statements. The MacroFunctions are thus “flattened” into
primitive elements that preserve the electrical connectivity of the
original design. The flattened file is then passed to the Translator
module with the extension .SDF. If no MacroFunctions are found, the
file is simply passed to the Translator module with the extension .ADF.

Translator Module

The Translator module converts the Flattener module output into a
Logic Equation File (LEF), which expresses the design as a series of
Boolean equations. The Translator then performs a thorough
examination of the logical completeness and consistency of the
design, including checks for design connectivity and syntactical errors.
Most errors are detected and can be easily corrected at this stage of
design processing. If an invalid request, such as a request for a pin

Functional Description 1-9

number that does not exist, is detected, the Translator issues an error
message and returns control to the ADP.

The Translator module can also perform automatic part selection, based
on the logic requirements of the design. With this option, you need not
define the EPLD to be programmed. Instead, you specify “AUTO” and
the Translator chooses the EPLD most likely to fit your design.

Expander Module

The Expander module expands the Boolean equations into sum-of-
products form, checks for evidence of combinatorial feedback,
removes redundant factors from product terms, and produces another
LEF.

If illegal combinatorial feedback is detected, you are alerted with an
error message, and control is returned to the ADP. (For example, a
symbol appearing on both the left- and right-hand sides of an equation
causes illegal feedback.)

After all equations have been processed successfully, control passes
to the Minimizer module.

Logic Equation Files

Logic Equation Files are internal data structures. The first intermediate
LEF is output by the Translator and passed to the Expander module;
the second LEF is generated by the Expander and input to the
Minimizer module; and the third LEF is output by the Minimizer and
input to the Fitter module or, optionally, to the LEF Analyzer module.
(For an example of ADF-to-LEF translation, see Appendix B in the
A+PLUS Reference Guide)

A+PLUS User Guide

Minimizer Module

At your request, the Minimizer module performs a sophisticated
Boolean logic reduction on the translated design to maximize utilization
of EPLD resources. Its primary reduction method includes generalized
consensus and logical absorption algorithms, which quickly and
significantly reduce the number of product terms in equations.

For designs using JK or SR flipflops, the Minimizer checks whether a D
or T flipflop will provide a more efficient design implementation in each
case. D or T flipflops are substituted where appropriate, and the
resulting equations are minimized accordingly.

Following the primary reduction scheme, the Minimizer applies
De Morgan’s inversion theorem. If you wish, you can choose to apply
logical inversion on an equation-by-equation basis.

If abnormal termination is caused, for example, by insufficient internal
storage, the Minimizer displays an error message and returns control to
the ADP.

LEF Analyzer Module

Fitter

At your request, the Analyzer module converts the intermediate LEF
output by the Expander (or, if minimization is requested, the Minimizer)
into a readable format similar to that of the ADF, which appears as a file
with the extension .LEF. You may then check the design for possible
problems, such as an excess of product terms. If you find a problem,
you can correct the input design file and resubmit it to the ADP.

Module

The Fitter module begins the final conversion of the Logic Equation
File into a JEDEC file format. Using the LEF output by the Minimizer,
the Fitter matches the requirements of your design with the known
resources of an Altera device. It places each logic function in the best
location and selects appropriate interconnection paths and pin
assignments. If you wish, you can specify some or all pin assignments,

Functional Description 1-11

and the Fitter will attempt to match these requests with the resources
on the pins. If it cannot find a fit, it issues an information message and
provides you with the option to remove your pin assignments and
continue the fitting process.

Regardless of whether a fit is achieved, the fitting process generates a
Utilization Report file (with the extension .RPT) that documents
macrocell and pin assignments, input and output pin names, and
buried registers, as well as any unused resources. (For a sample
Utilization Report and detailed explanations, see Utilization Report in
the A+PLUS Reference Guide.)

Assembler Module

The Assembler Module completes design processing by converting
the Fitter's requests into a programmable image for the part, in the form
of a JEDEC file (with the extension .JED) that includes the header
information from the Altera Design File(s). The JEDEC file is then
processed by LogicMap Il and the Altera Logic Programmer unit to
produce a working device.

A+PLUS User Guide

Functional Simulator

Altera’s optional Functional Simulator package is a time-saving tool for
testing the logical operation of an EPLD design. It uses specified
design and part information to model the operation of the EPLD before
the design is actually committed to hardware. (For additional
information, see Functional Simulator.)

Functional Description

LogicMap Il

LogicMap Il is the interface software that programs EPLDs from JEDEC
files generated by the Altera Design Processor. Before programming a
part, it enables you to view and edit a JEDEC file through a series of
hierarchical windows. (Note: JEDEC file editing is not available for the
BUSTER EPLD [EPB1400].) The programming process allows you to
program, examine, and verify an Altera EPLD with the external Logic
Programmer unit. (For further information, refer to the LogicMap 11
manual.)

A+PLUS User Guide

SECTION 2

Installation

This section assists you with the installation of A+PLUS software.

For instructions on how to install A+PLUS hardware, refer to Installation
in the LogicMap Il manual.

If you have any questions regarding installation, please contact:

Altera Corporation
Applications Dept.
3525 Monroe Street
Santa Clara, CA 95051
(408) 984-2805 ext. 102

Installation 2-1

Stop — Read this first ...

2-2

Please be sure to go through the installation procedure in the following
order. Refer also to the related hardware installation procedure in the
LogicMap Il manual. For your convenience, blank boxes are
provided so you may check off each item () after you have completed

it.

O

O

O

O

Record the serial numbers of your programming
hardware before beginning the installation.

Fill out the Warranty Registration card. (If you have
purchased software only, write 0 for the serial
numbers.)

Read the READ.ME file on your INSTALL diskette for
changes that may have been made to the installation
procedure since the manual was printed.

Read the installation instructions for installing the
hardware in the LogicMap |l manual.

Install the programming hardware.

Read the installation instructions for installing the
software in the A+PLUS User Guide.

Install the A+PLUS software.

Mail the Warranty Registration card to Altera. You will
receive all future update information for A+PLUS
software only if you mail this card.

A+PLUS User Guide

A+PLUS Distribution Diskettes

Installation

A+PLUS software requires DOS version 2.0 or greater. DOS version
3.3 is recommended.

The following list describes all available Altera distribution diskettes.
Depending on which development system you have purchased, you
may have some or all of these diskettes. Refer to the lists on the
following pages to verify which diskettes should accompany your
development system.

INSTALL
Contains the installation procedures for all A+PLUS modules.

APLUS
Contains the A+PLUS programs and their support files.

ADP
Contains the Altera Design Processor (ADP).

LOGICMAP
Contains the LogicMap |l program and support files.

ECF
Contains data files used by LogicMap I1.

SMV
Contains the State Machine Converter and support files.

LOGICAPS
Contains the LogiCaps schematic capture program.

UTILITIES
Contains the LogiCaps utilities.

MACROLIB
Contains the Altera Standard MacroFunctions.

MACROLIB-TTL
Contains the Altera TTL MacroFunctions.

ADLIB
Contains the Altera Design Librarian.

2-4

FSIM
Contains the Functional Simulator program.

FNET

Contains the Altera Primitive Library and interface programs for
use with FutureNet's DASH Schematic Designer.

A+PLUS User Guide

If You Have Purchased PLCAD-SUPREME...

Installation

...you should have the following distribution diskettes:

INSTALL

Contains the installation procedures for all A+PLUS modules.

APLUS
Contains the A+PLUS programs and their support files.

ADP
Contains the Altera Design Processor (ADP).

LOGICMAP
Contains the LogicMap 1l program and support files.

ECF
Contains data files used by LogicMap |I.

SMvV
Contains the State Machine Converter and support files.

LOGICAPS
Contains the LogiCaps schematic capture program.

UTILITIES
Contains the LogiCaps utilities.

MACROLIB
Contains the Altera Standard MacroFunctions.

MACROLIB-TTL
Contains the Altera TTL MacroFunctions.

ADLIB
Contains the Altera Design Librarian.

FSIM
Contains the Functional Simulator program.

2-5

If You Have Purchased PLCADA...

...you should have the following distribution diskettes:

= INSTALL
Contains the installation procedures for all A+PLUS modules.

. APLUS
Contains the A+PLUS programs and their support files.

u ADP
Contains the Altera Design Processor (ADP).

. LOGICMAP
Contains the LogicMap Il program and support files.

= ECF
Contains data files used by LogicMap II.

. LOGICAPS
Contains the LogiCaps schematic capture program.

= UTILITIES
Contains the LogiCaps utilities.

u MACROLIB
Contains the Altera Standard MacroFunctions.

L] MACROLIB-TTL
Contains the Altera TTL MacroFunctions.

= ADLIB
Contains the Altera Design Librarian.

2-6 A+PLUS User Guide

If You Have Purchased PLDS2...

Installation

...you should have the following distribution diskettes:

INSTALL

Contains the installation procedures for all A+PLUS modules.

APLUS
Contains the A+PLUS programs and their support files.

ADP
Contains the Altera Design Processor (ADP).

LOGICMAP
Contains the LogicMap Il program and support files.

ECF
Contains data files used by LogicMap II.

2-7

Backups of Altera Distribution Diskettes

Before installing Altera software, you must make backups of all Altera
distribution diskettes in case one of the distribution diskettes fails to
work. Note that the copy-protected diskettes are specially formatted.
You can copy the files from these diskettes onto a backup diskette, but
you cannot start the copy-protected programs with the backup
diskette. So, if you lose or damage a program on an original copy-
protected diskette, you must copy the backup of the program onto the
original copy-protected diskette.

s The DOS DISKCOPY command cannot be used to
duplicate the distribution diskettes. Altera diskettes are
copy-protected and DISKCOPY is unable to read them.

To make backups of all Altera distribution diskettes, you must go
through the following steps:

1. Boot DOS.

2. Format a blank diskette for each distribution diskette with the
DOS FORMAT command. (Refer to your DOS manual.)

3a. If your system has one floppy disk drive and one hard disk drive,
insert an Altera distribution diskette into drive A and type:

COPY A:** A: <Enter>

You will be prompted to replace the Altera distribution diskette
with a formatted diskette.

3b. If your system has two floppy disk drives and one hard disk drive,
insert the Altera distribution diskette into drive A and the
formatted diskette into drive B and type:
COPY A:** B: <Enter>

4. Repeat step 3 for each Altera distribution diskette.

5. Store your backup diskettes in a safe place.

2-8 A+PLUS User Guide

A+PLUS Installation

Installation

After you have completed the following installation procedure, you will
be able to run A+PLUS directly from your hard disk.

Before installing A+PLUS software on your hard disk, you must ensure
that your computer has at least 1 Mbyte of free disk space on the hard
disk and 640 Kbytes of RAM memory, otherwise installation will not be
successful. Available space is verified with the DOS CHKDSK
command. (For information regarding DOS, refer to IBM Disk Operating
System, Version 3.30 User’s Guide; IBM Disk Operating System,
Version 3.30 Reference; and IBM DOS Technical Refererice.)

1€ IBM AT high-density 1.2 Mbyte diskette drives are not
compatible with the standard 360 Kbyte diskette drives.
If you anticipate moving A+PLUS from an AT to an XT
computer, you should use a 360 Kbyte diskette drive, if
available, to perform the installation.

This procedure assumes that your hard disk is drive C. (If you have
another hard-disk drive, substitute the appropriate letter.)

1. Boot the computer from the hard disk.

I Remove any write-protect tabs that may be on the
distribution diskettes.

2. Insert the Altera-provided INSTALL diskette into drive A or B
and enter:

A:INSTALL <Enter> (if you use drive A)
or
B:INSTALL <Enter> (if you use drive B)

The program will perform some basic checks, after which the
Installation Main Menu, shown in Figure 2-1, is displayed.

2-9

2-10

A LTE R A Programmable Logic User System
Software Configuration Program

Copyright (C) 1987 Altera Corporation
version 5.0

I Main Menu I

[1] Install Software
[2] De-Install Software
[3] Change Programming Hardware & A+PLUS menu configuration.

Press a number key to select an option:
Press <Esc> to exit to DOS.

Figure 2-1. Installation Main Menu

Iltem [1] Guides you through A+PLUS installation.

Item [2] De-installs the software from the current system so
that you can move the software to another computer.

Iltem [3] Allows you to change the A+PLUS hardware
installation file called EPLD.SYS. This file is used
only if you want to change the address location of
the programming card or disable the color display
option. Refer to the LogicMap Il manual for valid
programming card addresses.

Press <1> to select option [1]. A set of prompts will guide you
step by step through your system configuration.

Next, you are prompted step by step through the actual
installation procedure.

This installation process has a master menu that provides
installation for all optional Altera products. If you try to
install an option which you have not purchased, you will
be returned to the Main Menu.

A+PLUS User Guide

Installation

5.

You are guided through the following process:

a.

b.

C.

d.

You create a directory on your hard disk that contains all
files from the installation diskette. You are also asked to
confirm the installation results.

You are requested to enter the address location of your
programming card. Type:

280 <Enter>
This is the default address.

You are asked to indicate whether you wish to use a color
or monochrome display.

You are asked to enter the name of your editor. LogiCaps
is the default editor.

Now, the Installation Menu is displayed. See Figure 2-2.

Installation Menu for:
Development Systems and Optional Software products

(1]
(2]
(3]
(4]
(5]
(6]
(71

Press a number key to select an option:
Press <Esc> to exit.

l Installation Menu l

Install A+PLUS Software.
Install LogicMap Software.
Install LogiCaps & Utilities.
Install TTL MacroFunctions & Altera Design Librarian.
Install State Machine Converter.

Install Functional Simulator.

Install FutureNet interface & library.

Figure 2-2. Installation Menu

2-12

a. You may install one or more of the programs in any order.

b. Once you press a number key, you are prompted to insert
the appropriate distribution diskette.

c. When you are finished, press <Esc> to return to the Main
Menu.

You may select other menu items from the Main Menu or press
<Esc> to return to DOS.

Remove any remaining diskette from the floppy disk
drive and press <Ctrl><Alt> to reboot the
system before using any of the A+PLUS programs.

Your CONFIG.SYS and AUTOEXEC.BAT files may
have been modified to make LogiCaps run properly.
Therefore, after completing the installation procedure,
you may want to examine these files to determine
whether they are compatible with other software on your
system. The original files will have been saved as
CONFIG.BAK and AUTOEXEC.BAK. To run
A+PLUS, the CONFIG.SYS file must contain
BUFFERS = 12 and FILES = 20.

A+PLUS User Guide

De-Installation

If you wish to install your A+PLUS software on a different computer,
you must first reverse the installation from your original system.

I If you are using a programming card, you must move this
card after you have de-installed the software and before
you re-install it on the new computer.

With the original INSTALL distribution diskette in drive A or B, type:

A: INSTALL <Enter>

or

B: INSTALL <Enter>

The Installation Main Menu is displayed (see Figure 2-1).

Select menu item [2] on the Main menu. The De-Installation Menu is
displayed, as shown in Figure 2-3.

A+PLUS
USE ONLY TO DE-INSTALL VERSIONS INDICATED

| De-Installation Menu |

[1] De-install A+PLUS (ver 5.0) Software.

[2] De-install LogicMap Software.

[3] De-install LogiCaps (ver 1.6) & Utilities.

[4] De-install TTL MacroFunctions & Altera Design Librarian.
[5] De-install State Machine Converter.

[6] De-install Functional Simulator (ver 2.5).

[71 De-install FutureNet interface & library.

Press a number key to select an option:

Press <Esc> to exit.

Figure 2-3. De-Installation Menu

Installation 2.13

2-14

Select the products you wish to de-install.

As a result of this de-installation, you can no longer use the A+PLUS
software on the hard disk of the first system.

After the initial installation, you cannot use the original distribution
diskettes for additional installations unless the de-installation program is
run first.

IC After de-installation, some A+PLUS files that are not
application files will be removed from the directory on
your hard disk.

A+PLUS User Guide

SECTION 3

Getting
Started

This section helps you get started with A+PLUS as quickly as possible.
It provides a brief description of each of the functions available on the
APLUS and ADP menus, and shows how the menus appear on your
computer screen.

After installing the A+PLUS software and hardware, you can use these
menu descriptions to quickly familiarize yourself with the steps used to
process a design file into a JEDEC file for programming an Altera EPLD.
For comprehensive information on using A+PLUS, including detailed
sample sessions, refer to the individual design entry method sections
in the A+PLUS User Guide. For more detailed descriptions of the
APLUS and ADP menu functions, see A+PLUS and ADP Reference in
the A+PLUS Reference Guide.

Getting Started 3-1

APLUS Menu

To invoke the APLUS Menu, type at the DOS prompt:
APLUS <Enter>

The APLUS Mernu is displayed, as shown in Figure 3-1.

Altera Programmable Logic User System
Applications assistance: (408)984-2805 x102

AP

F1 Welcome to A+PLUS Version 5.0

R

B Press <Enter> to select the highlighted function. Press

F4 <UpArrow>, <DnArrow>, or a function key to select a new
F5 function.

Fé

F1 Press <F1> for additional Help.

F8 i

If you experience problems with any aspect of A+PLUS or
with EPLD design in general, call Altera Applications
for assistance at either of the following numbers.

USA -—— (800)821-8124

elsewhere — (408)984-2805 x102

Copyright 1985, 1986, 1987, Altera Corporation

Select with Enter, Cursor keys, or Function keys:

Figure 3-1. APLUS Menu

The current (default) menu selection, <F4> (ADP), is highlighted. The
numbers displayed on the left of the menu selections show the
function keys used to execute each function. You may also select any
function with the cursor keys and <Enter>.

A+PLUS User Guide

By pressing <F4>, you invoke the menu for the Altera Design
Processor. The functions controlled by the ADP Menu allow you to
process your design file into a JEDEC file used for programming an
Altera EPLD. The ADP Menu functions are described in ADP Menu
(below).

The other APLUS Menu functions are:

<F1> Help Displays helpful information on APLUS Menu
functions. After pressing <F1>, you may use the function or
cursor keys to display a help message for each menu function.

<F2> Exit Terminates A+PLUS and returns you to DOS. (Use the
DOS Command (<F8>) function to execute DOS commands
during the current A+PLUS session.)

<F3> <LogiCaps> Invokes the text editor or schematic capture
program of your choice. LogiCaps is the default, but you can
override the default by entering another editor (e.g., WordStar)
during installation.

<F5> LogicMap II Invokes the LogicMap Il program, which
allows you to program an Altera EPLD with A+PLUS hardware
and a JEDEC file generated by the ADP.

<F6> Func Simulator Invokes Altera’s Functional Simulator,
which allows you to test the logical operation of your design
before it is actually committed to hardware.

<F7> Directory Allows you to enter a search pattern and then
displays a list of DOS files matching the pattern.

<F8> DOS command Temporarily returns you to DOS so that you
can enter a DOS command. (After entering the DOS command,
type EXIT to leave the temporary DOS environment and
return to A+PLUS.)

Getting Started 3-3

ADP Menu

The ADP Menu functions allow you to specify the conditions used for
compiling your design file. To invoke the ADP Menu, press <F4>
while in the APLUS Menu. The ADP Menu, shown in Figure 3-2, is
displayed.

Altera Programmable Logic User System
Applications assistance: (408)984-2805 x102

ADP Menu
Fl Help
F2 APLUS Mens
F3 Input Format ADF
F4 :File Name(s):
F5 :Minimization::
F6 : Inversion Ct
F7 LEF Analysis
s % S

Input Format:

Figure 3-2. ADP Menu

The current (default) menu selection, <F3> (Input Format), is
highlighted. This function is the first in the default sequence for
entering processing parameters, but you may move around the menu
and enter and change processing options in any order. The default
processing settings are shown on the right of the function names.

A+PLUS User Guide

The ADP Menu functions are:

<F1>

<F2>

<F3>

<F4>

<F5>

<Fé6>

<F7>

Getting Started

Help Displays helpful information on ADP Menu functions.

APLUS Menu Terminates the current ADP session and
returns you to the APLUS menu.

Input Format Prompts you for the format of your input file:

A or <Enter> - for an Altera Design File (the default)

C - for a component list as output by P-CAD’s
PC-CAPS

P - for a pinlist as output by FutureNet’'s DASH
Schematic Design Editor

S - for a State Machine File

File Name(s) Prompts you for the name(s) of file(s)
containing your design. You need not enter the filename
extension.

Minimization Allows you to request a reduction of the
Boolean logic of the design. If you enter Y (Yes), Boolean
minimization is performed on the design. If you enter N (No),
the ADP Menu selection automatically moves to the LEF
Analysis (<F7>) prompt.

Inversion Control Allows you to request control over
inversion of individual Boolean" equations during the
minimization process. If you enter N (No—-the default), the ADP
automatically decides whether or not to invert each equation
and retains the form that contains the fewest product terms. If
you enter Y (Yes), you are asked on an equation-by-equation
basis whether you wish to perform a De Morgan’s inversion.
This feature is useful mainly for unusual EP310 and EP1210
designs.

LEF Analysis Allows you to request the ADP to analyze
the intermediate Logic Equation File (LEF). The LEF Analyzer
creates a file (in a format similar to the Altera Design File format)
that allows you to examine the design after it has been
translated, expanded, and, if requested, minimized.

3-5

3-6

After you have answered the ADP Menu prompts, you are asked:

Do you wish to run under the above conditions [Y/N]?

Simply enter Y, or press <F8> (Execute) to execute the ADP. That’s
all you need to do—the ADP will immediately process the design

according to the current menu options and generate a JEDEC file for
programming an Altera EPLD.

A+PLUS User Guide

Boolean Equation
Entry

This section describes the process of entering circuit designs with
Boolean equations. It includes a list of requirements for designing
exclusively with Boolean equations; an extensive sample session;
several sample ADFs; a detailed description of the Altera Design File
(ADF) format used to enter circuit designs with Boolean equations; and
additional design guidelines.

Who Should Use Boolean Equation Entry?

This design entry method is convenient for design engineers who are
familiar with different types of programmable logic devices. If you have
previous experience with Boolean assemblers, you will find the
A+PLUS source code syntax easy to master. The programmable
architecture of the Altera EPLDs is controlled in the Network Section of
the source code, which is the only section whose syntax will be new to
you. Otherwise, you use standard logical operators. This feature allows
you to incorporate design logic generated for other devices into your
EPLD designs.

Boolean Equation Entry BE-1

General Requirements

To enter your design with Boolean equations, you need:

= A text editor that uses standard ASCII character conventions. (If
your word processor has both document and non-document
modes, use only the non-document mode.)

= A filename with the extension .ADF.

BE-2 A+PLUS User Guide

Functional Description

To implement a design exclusively with Boolean equations, you use a
standard ASCII text editor to create an Altera Design File (ADF) that
describes the circuit. The completed file is submitted to the Altera
Design Processor (ADP) which, in turn, produces a JEDEC file. The
LogicMap Il module then uses the JEDEC file to program an EPLD.
Figure BE-1 illustrates this process:

Boolean Equation Entry BE-3

BE-4

Pinlist
Converter
Schematic
ture

ntry
‘ LogiCaps >

Netlist

Entry

' Text Editor >

lean \
Bool Text Editor

Equation
ntry

State
Machine
Entry

State
Machine
Converter

Functional
9 Simulator

LogicMap

Logic
Programmer

Figure BE-1. Boolean Equation Entry

A+PLUS User Guide

Sample Session

This sample session provides a step-by-step example of how to enter a
design created with Boolean equations and produce a working EPLD.
It includes a description of a sample design-—a beverage dispenser
controller—and instructions for each phase of design entry and
processing. We strongly recommend that you go through this sample
session before implementing your own design. (For your reference,
four additional ADFs are included in the section following this sample
session.)

The Sample Circuit

The sample circuit controls the operation of a simplified coin-activated
beverage vending machine. Figure BE-2 shows the circuit schematic.

The mechanism has five inputs and three outputs. The RESET,
COINDROP, and CUPFULL inputs control the operating conditions
of the three outputs of the circuit: DROPCUP-POURDRNK-
STROBE. (The STROBE signal is output for use by other circuits in
the machine.)

Using the recommended Altera naming conventions (described in
Network Section Requirements), the equations describing the
behavior of the sample circuit may be expressed as follows:

DROPCUPd
POURDRKdA

COINDROP * /DROPCUP * /POURDRNK;
DROPCUP * /POURDRNK
/CUPFULL * /DROPCUP * POURDRNK;
STROBE = /CLOCK * (DROPCUP * /POURDRNK)

+ (/DROPCUP * POURDRNK));
NEWCYCLE = DROPCUP * POURDRNK;

+

Boolean Equation Entry BE-5

Since entire equations may be substituted into the right-hand sides of
other equations by substituting intermediate variables, it is also
possible to express the behavior of the sample circuit with:

DROPCUPd = COINDROP * /DROPCUP * /POURDRNK;
CUPREADY = DROPCUP * /POURDRNK;
POURDRKd = CUPREADY

/CUPFULL * /DROPCUP * POURDRNK;
STROBE = /CLOCK * (CUPREADY

+ (/DROPCUP * POURDRNK));
NEWCYCLE = DROPCUP * POURDRNK;

+

BE-6 A+PLUS User Guide

BE-7

unoa) ojdwes z-3g ainbi4

dNI
® <1 D010
prissssssssaaaas . 108

FEOULS } ;
{ANOD "
E ! WOX
_ ION
.
dNI
SINSQENOd ANV <3 TINAdND
ION
G m— 1
£aNV IJAIIL.
ION
9
!))|
" 03— S Jouanioo
dNDdoNa r—<_ -2, —(] .
.mmm_mm. I €NV dNI =
1 * & 1dsTy iy
(S
| ®
dNI 3
) WS < T19YNE g
8
3
[o]
Q
m

Entering the Sample Design

BE-8

Step 1 — Choose the Text Editor:

Choose a standard ASCIl text editor (in accordance with the
specifications given in General Requirements).

The filename for this sample design is BEVDIS.ADF. (If you wish to

establish a filename before entenng your text editor, be sure to include
the .ADF extension.)

Step 2 — Enter the Header:

Enter the Header Section. This section is optional, but is
recommended because it provides design documentation that appears
in the Logic Equation File, Utilization Report, and JEDEC File:

Your Name <Enter>

Your Company <Enter>

9/30/87 <Enter>

1.00 <Enter>

B <Enter>

EP310 <Enter>

Beverage Dispenser Controller <Enter>

Step 3 — Enter the Declarations:

Enter the Declarations Section, which specifies options, the target
EPLD, and input and output pins:

<Enter> (Optional blank line to separate the Header Section from
the Declarations Section.)

OPTIONS: SECURITY = OFF <Enter>

PART: EP310 <Enter>

INPUTS: ENABLE@7, RESET@5, COINDROP,CUPFULL,
CLOCK <Enter>

OUTPUTS: DROPCUP@14, STROBE, POURDRNK <Enter>

A+PLUS User Guide

(Note that the inputs ENABLE and RESET and the output
DROPCUP have declared pin assignments.)

Step 4 — Enter the Network:

Enter the Network Section. This section defines the input and 1/O
architecture to be programmed with primitive statements:

<Enter> (Optional blank line to separate the Network Section from
the Declarations Section.)

NETWORK: <Enter> (<Enter> is optional)

ENABLE = INP(ENABLE) <Enter>
RESET = INP(RESET) <Enter>
COINDROP = INP(COINDROP) <Enter>
CUPFULL = INP(CUPFULL) <Enter>

CLOCK = INP(CLOCK) <Enter>

DROPCUP,DROPCUP = RORF(DROPCUPI,CLOCK,
NEWCYCLE, RESET,ENABLE) <Enter>

POURDRNK,POURDRNK = RORF(POURDRKd,CLOCK,
NEWCYCLE,RESET,ENABLE) <Enter>

STROBE = CONF(STROBEc,) <Enter>

Note that no Oe term is given for STROBE: it will go to VCC—the

default value. Information on primitive statement syntax is given in
Network Section Requirements.

Step 5 — Enter the Equations:

Enter the Equations Section, which implements the Boolean logic for
the design:

Boolean Equation Entry BE-9

<Enter> (Optional blank line to separate the Network Section from
the Equations Section.)

EQUATIONS: <Enter> (<Enter> is optional)

DROPCUPd = COINDROP * /DROPCUP

* /POURDRNK; <Enter>
CUPREADY = DROPCUP * /POURDRNK; <Enter>
POURDRKd = CUPREADY

+ /CUPFULL * /DROPCUP

* POURDRNK; <Enter>
STROBEc¢ /CLOCK * (CUPREADY

+ (/DROPCUP * POURDRNK)); <Enter>
NEWCYCLE = DROPCUP * POURDRNK; <Enter>

Step 6 — Terminate the ADF:

Terminate the ADF with the End Statement:

<Enter> (Optional blank line to separate the Equations Section
from the End statement.)

END$ <Enter>

Your ADF should look like the one shown in Figure BE-3. (Additional
ADF samples are given in Figures BE-4 through BE-7.)

Step 7 — Save the Design:

Save your design under the legal DOS filename BEVDIS.ADF and
return to DOS.

BE-10 A+PLUS User Guide

Your Name

Your Company

9/30/87

1.00

B

EP310

Beverage Dispenser Controller

OPTIONS: SECURITY = OFF

PART: EP310

INPUTS: ENABLE@7, RESET@5, COINDROP, CUPFULL, CLOCK
OUTPUTS: DROPCUP@14, STROBE, POURDRNK

NETWORK:

ENABLE = INP(ENABLE)
RESET = INP(RESET)
COINDROP = INP(COINDROP)

CUPFULL = INP(CUPFULL)
CLOCK = INP(CLOCK)
DROPCUP,DROPCUP = RORF(DROPCUPd,CLOCK,NEWCYCLE,

RESET,ENABLE)
POURDRNK,POURDRNK = RORF(POURDRKdA,CLOCK,NEWCYCLE,
RESET,ENABLE)
STROBE = CONF(STROBEC,)
EQUATIONS:
DROPCUPd = COINDROP * /DROPCUP * /POURDRNK;
CUPREADY = DROPCUP * /POURDRNK;
POURDRKd = CUPREADY
+ /CUPFULL * /DROPCUP * POURDRNK;
STROBEc /CLOCK * (CUPREADY

+ (/DROPCUP * POURDRNK));
NEWCYCLE = DROPCUP * POURDRNK;

END$

Figure BE-3. ADF for the Sample Design (BEVDIS)

Boolean Equation Entry BE-11

BE-12

Step 8 — Check the ADF:

To check the ADF for errors such as unconnected pins or faulty syntax,
submit the completed ADF to the ADP. The ADP translates the ADF
into internal logic equations, detects design and syntax errors, and
displays appropriate error messages. (See Step 9.)

Step 9 — Process the Design:

Now you submit the BEVDIS.ADF file to the ADP. From DOS enter:
APLUS <Enter>

The APLUS Menu is displayed.

Press <F4> to display the ADP Menu.

The prompt asks you to specify your form of input. Press <Enter>.
(ADF is the default.)

Now answer the <F4> File Name(s) prompt by typing:

BEVDIS <Enter>

Iz You need not enter the filename extension; A+PLUS will
automatically add the extension for you. Be sure to
specify the correct pathname and directory.

You are then prompted through the remaining ADP Menu functions:

For <F5> Minimization, press <Enter>. (Y [Yes] is the default).

For <F6> Inversion Control, press <Enter>. (N [No] is the default).

For <F7> LEF Analysis, press <Enter>. (N [No] is the default).

After you have answered the sequential prompts of the ADP Menu,
you are asked:

Do you wish to run under the above conditions [Y/N]?

A+PLUS User Guide

Enter Y or press <F8> (Execute) to execute the ADP. During design
processing, the ADP and its modules will display information messages
that report current processing status. When the design cycle is
completed, you are asked:

Would you like to implement another design [Y/N]?
Enter N. You are returned to the APLUS Menu. For detailed
information on the Altera Design Processor and the ADP Menu

functions, refer to A+PLUS and ADP Reference in the A+PLUS
Reference Guide.

Step 10 — Program the EPLD:

Finally, you submit your design to LogicMap II. While still in the APLUS
Menu, press <F5> to select LogicMap Il If the Logic Programmer card
is plugged in, the program will come up on the screen. If not, the
following message is displayed:

Programmer self test failed
Device must NOT be in socket for this test to pass!
Enter:
C to continue without programming card
T to run diagnostics again
Q to return to operating system
When the LogicMap Il System Level Window is displayed, you are

asked to wait until the calibration process has been completed. Then
the System Level HELP Window is opened.

1 C Do not put the EPLD into the socket of the programming
unit until you are prompted to do so.

Boolean Equation Entry BE-13

BE-14

Select Program Device with the box cursor and enter the filename
BEVDIS. When you are prompted to:

Select Device for Programming

enter

EP310 <Enter>

LogicMap Il automatically checks whether the EPLD is erased and
ready for programming. After you have answered all the prompts,
programming time is approximately five to ten seconds for this device.
(For complete information on device programming, refer to the
LogicMap Il manual.)

This concludes the sample session.

A+PLUS User Guide

Altera Design File (ADF) Format

After you have created a design with Boolean equations, you enter it
into the ADF format. An ADF contains the following sections:

Header Section
Declarations Section
Network Section
Equations Section
End Statement

The syntax requirements for each ADF section are described below.
(For a complete Backus-Naur Form (BNF) description of the ADF, refer
to Altera Design File Formatin the A+PLUS Reference Guide.)

Figure BE-4 shows a sample ADF that illustrates the ADF sections and
the use of design conventions.

Boolean Equation Entry BE-15

Header
Section

Declarations
Section

Network
Section

Equations
Section

End
Statement

BE-16

DESIGNER NAME

COMPANY NAME

SEPT. 30, 1987

1.00

A

EP310 White space is

7493 DIV8 COUNTER permitted between

/ any lines

Turbo-Bit set to

OPTIONS: TURBO = OFF ———————— OFF; Security Bit

PART: EP320 defaults to OFF

INPUTS: RESET1, RESET2, CLOCK@1 - ..]

OUTPUTS: Q0, Q1, Q2 Pin assignment

NETWORK:

User comment
&~

CLOCK = INP(CLOCK) %CLOCK INPUT%
RESET1 = INP(RESET1)

RESET2 = INP(RESET2)

Q2,Q2 = RORF(Q2d, CLOCK, CLEAR, GND, VCC)
Q1,Q1 = RORF(Q1d, CLOCK, CLEAR, GND, VCC)
Q0,Q0 = RORF(Q0d, CLOCK, CLEAR, GND, VCC)

EQUATIONS:

. Equations end
0d = /Q0
Q ;< with semicolon

Qld =/Q0 */Ql + Q0 * QI ;

Q2d = Q2*Q1 4————————— Equations may
+Q0*Q2 span lines
+ Q0*Q1'*Q2' ;
CLEAR = RESETI1*RESET2 ;
All ADFs must
END$ terminate with
END$ statement

Figure BE-4. Sample ADF

A+PLUS User Guide

Header Section Requirements

The Header Section provides the design documentation. Header
Section requirements are as follows:

= The Header Section in the ADF is optional. However, since the
file header serves to identify the Utilization Report and the
JEDEC file, this section is highly recommended.

L] if it is present, it must be the first section in the ADF.
L] All fields in the Header Section are terminated by <Enter>.
= Any printable character except the asterisk (*) is allowed.

" Fields in the Header Section must appear in the following order,
with one item on each line. The maximum character count for
each field is indicated in parentheses.

Designer (48)

Company (60)

Date (24)

Number (24)

Revision (24)

EPLD (10)

Comment (512)

Any other information (may be more than one line)

Declarations Section Requirements

The Declarations Section specifies the EPLD used for the design,
input and output pin names, and optional pin assignments. It also
allows you to disable/enable the Turbo-Bit (a control bit for choosing
speed and power characteristics of an EPLD) and the Security Bit
(which prevents a device from being interrogated or inadvertently
reprogrammed). This section contains subsections which are referred
to as the Options, Pan, Inputs, and Outputs sections. Declarations
Section requirements are as follows:

Boolean Equation Entry BE-17

BE-18

Options Section

The Options Section is optional. It is identified with the keyword
OPTIONS:, followed by either or both of the following option
specifiers:

= TURBO, indicating Turbo-Bit. The values are ON (the default) or
OFF. If ON or OFF is not specified, the Turbo-Bit defaults to ON.
(The BUSTER (EPB1400) and EP310 parts do not support the
Turbo-Bit option. LogicMap will ignore any Turbo-Bit information
entered for these EPLDs.)

L] SECURITY, indicating the Security Bit. The values are ON or

OFF (the default). If ON or OFF is not specified, the Security Bit
defaults to OFF.

The keyword OPTIONS: must be the first word in the section. The
string is terminated with <Enter>. Example:

OPTIONS: TURBO = ON, SECURITY = OFF <Enter>

Part Section

The Part Section is required. It consists of the keyword PART:,
followed by the name of an Altera EPLD or AUTO (for automatic part
selection). The keyword PART: must be the first word in the section.
The string is terminated with <Enter>. Example:

PART: EP1210 <Enter>

s Automatic part selection will not be successful if you
specify pin assignments or if the design contains too
many inputs, outputs, or macrocells.

A+PLUS User Guide

Inputs Section

The Inputs Section is required. It consists of the keyword INPUTS:,
followed by a list of all input pin names used in the design. The keyword
INPUTS: must be the first word in the section. List elements are
delimited by commas or white space. The list may span lines at any
point except within a name and must be terminated with <Enter>. You
may include specific pin assignments by appending an at-symbol (@)
plus a one- or two-digit pin number to any input name on the list. (In the
EP1800G, pin numbers are specified with an @-symbol plus one letter
and a one- or two-digit number.) Pin numbers can be specified for any
pin name. Pin names may contain up to eight characters, including any
printable character except percent symbol (%), comma (,), equals sign
(=), at-symbol (@), or left and right parentheses (()). The @-symbol
plus pin number may contain up to three characters. Example:

INPUTS: ENABLE@7, RESET@5, COINDROP, CUPFULL,
CLOCK@1 <Enter>

s 1. If you use an asterisk (*) in an input or output pin
name, it will be converted into a tilde (~) in the JEDEC file
generated by the ADP. You must ensure that this
conversion will not create duplicate pin names (for
example, if you use both * and ~ when naming pins).

2. The ADP creates internal node names that contain
periods (.). User-assigned pin names that contain
periods may occasionally conflict with these node names
and cause unpredictable results.

3. The Functional Simulator ignores all user-defined pin

names that contain periods (periods are allowed only for
referencing internal nodes of I/O primitives).

Boolean Equation Entry BE-19

Outputs Section

The Outputs Section is required. It consists of the keyword
OUTPUTS:, followed by a list of all output pin names used in the
design. The keyword OUTPUTS: must be the first word in the section.
Output pin names and numbers have the same format as in the Inputs
Section. (Note: Pin numbers can be specified for any pin name or
buried register output.) Example:

OUTPUTS: DROPCUP, POURDRNK@16, STROBE <Enter>

s

1. Bidirectional pins using the ROIF, TOIF, and COIF
primitives must be declared only in the Outputs Section
of the Altera Design File (ADF), not in the Inputs Section.

2. Buried register outputs (of NOCF, NOJF, NORF,
and NOTF primitives) may be listed in the Outputs
Section. They may also be assigned to the pins
associated with EP1800 global macrocells and BUSTER
generic macrocells. However, these node names must
be different from true output pin names.

Network Section Requirements

BE-20

The required Network Section specifies the input and 1/O architecture
to be programmed. Network Section requirements are as follows:

The keyword NETWORK: must be the first word in the section.

Following the keyword, the architecture of each input, output,
and /O pin used in the design must be defined with primitive
statements. Primitive statements must be separated by white
space or <Enter>. Table BE-1 shows the syntax for each
element with mnemonic node names. (Refer also to Altera
Primitive Library in the A+PLUS Reference Guide for the
formal ADF syntax of primitive statements, and to Naming
Conventions [below].)

In addition to dedicated input pins, any I/O pin can be used as an
input pin with the INP primitive.

A+PLUS User Guide

L] The Clear (C), Preset (P), and Output Enable (Oe) inputs to /0O
primitives are optional and do not require connections. If they are
left unconnected, you must retain the commas that delimit the
fields. Example:

Namep, Name = RORF(Named, CIk,,,)

The reserved signal names VCC and GND are then substituted
by default (C, P = GND; Oe = VCC), i.e., Clear and Preset
signals are disabled and the output is permanently enabled.

" The Clock (CIk), Read Strobe (Rs) and Write Strobe (Ws) inputs
to Bus I/O primitives (namely, BUSX, LBUSI, LBUSO, LINPS,
RBUSI and RINPS) are optional. If they are connected, they
must be connected directly to a pin or to VCC, GND, and GND,
respectively. If they are left unconnected, you must retain the
commas that delimit the fields. When the Clk, Rs, and Ws are
left unconnected, logic must be connected to the Output Latch
Enable (Ole), Output Enable (Oe), and Write Enable (We),
respectively, which will have full control of the flipflop. (For
additional information, refer to the Bus I/O primitive descriptions
in Altera Primitive Library in the A+PLUS Reference Guide
and to the EPB1400 Data Sheet.)

L] The CIk inputs to primitives can be obtained in three ways (legal
clocking configurations for all Altera EPLDs are described in
Appendix A of the A+PLUS Reference Guide):

(1) A clock driven by an input pin is assumed to be
synchronous unless it is specifically assigned to a pin other
than a dedicated synchronous clock pin.

(2) To force a clock input to be asynchronous, feed the signal
to a CLKB (Asynchronous Clock Buffer) primitive and
connect the CLKB output to the input of a flipflop.

Example:

L RORF
we X LI Pg PIN.NAME
= L~

I

Boolean Equation Entry BE-21

BE-22

)

A clock driven by Boolean logic is always asynchronous.
(Use of the CLKB primitive is optional.) BUSTER
(EPB1400) macrocells allow Boolean equations feeding
the Clock inputs to I/O primitives to contain up to two
product terms. In the EP600, EP610, EP900, EP910, and
EP1800 parts, the logic feeding an asynchronous clock
may contain one product term. However, in any of these
EPLDs, asynchronous clocks with logic that requires up to
eight product terms as input can be implemented by
connecting the logic as an input to an NOCF primitive, and
using the output of the NOCF as the clock input to the
register. Example:

_| | RORF
DD, -

Dual I/0 feedback is supported by EP1800 global macrocells and
BUSTER generic macrocells. To implement dual 1/O feedback,

you enter the same pin name in both the Inputs and Outputs

Section, and use this pin name in both input and I/O primitives in

the Network Section. Pin assignments are optional; if they are

used, both pin names must be assigned to the same pin.

The following example shows a partial ADF that implements dual
1/0 feedback for the pin called DUALT:

| RuaLld D" Q l'>-p—<:j DUALL1

— 0e

CIk_| e
€]

—] DUALIf (register fbk)

logic | DUALI (pin fbk)

A+PLUS User Guide

INPUTS:

DUAL1 ... % pin name in Inputs Section%
OUTPUTS:

DUALI1 ... % pin name also in Outputs Section%
NETWORK:

DUAL1 = INP(DUALI1)
DUALI1, DUAL1f = RORF(DUAL1d, Clk, C, , Oe)

% DUALISf is internal registered feedback (before tri-state
buffer) DUAL1 output is pin feedback (after tri-state

buffer) %

EQUATIONS:

Oe = A * B; % output enable function %
DUAL1d = C * D; % DUALI1d may also be a function

of DUAL1%

L] Buried register outputs (of NOCF, NOJF, NORF, and NOTF
primitives) may be assigned to the pins associated with EP1800
global macrocells and BUSTER generic macrocells. When logic is
buried on these macrocells, the associated pin may also be used
as an input pin.

" The procedure for defining Active Low inputs and outputs is
described in Active Low Signals (below).

Boolean Equation Entry BE-23

Table BE-1. Input, /O, and Bus I/O Syntax (Part 1 of 3)

Legend

C Clear Ole Output latch enable
Clk Clock P Preset
Ile Input latch enable Re Read enable
Namebp dedicated bus port name | Rs Read strobe
Nameibus Internal bus name We Write enable
Namep Pin name Ws Write strobe
Oe Output enable

Input Primitives:

Name = INP(Namep)

[Input]
Name = LINP(Namep,lle)

[Latched Input]

I/0 Primitives:

Namep,Name = COCF(Namec,Oe)

[Combinatorial Output,Combinatorial Feedback]
Namep,Name COIF(Namec,Oe)
[Combinatorial Output,]/O Feedback]

I

Namep,Name = COLF(Namec,Oe,lle)
[Combinatorial Output,Latched Feedback]

Namep = CONF(Namec,O¢)
[Combinatorial Output,No Feedback]

Namep,Name

It

CORF(Namec,CIk,C,P)
[Combinatorial Output,Registered Feedback]

BE-24 A+PLUS User Guide

Table BE-1. Input, /O, and Bus /O Syntax (Part 2 of 3)

1/0 Primitives: (continued)

Namep,Name =

Namep =

Name =

Name =

Name =

Name =

Name =

Namep,Name =

Namep,Name =

Namep,Name =

Namep =

Namep,Name =

Namep =

Namep,Name =

JOJF(Namej,Clk,Namek,C,P,O¢)
[JK Output,JK Feedback]

JONF(Namej,Clk,Namek,C,P,O¢)
[JK Output,No Feedback]

NOCF(Namec)
[No Output,Combinatorial Feedback]

NOJF(Namej,Clk,Namek,C,P)
[No Output,JK Feedback]

NORF(Named,Clk,C,P)
[No Output,Registered Feedback]

NOSF(Names,Clk,Namer,C,P)
[No Output,SR Feedback]

NOTF(Namet,CIk,C,P)
[No Output, T Feedback]

ROCF(Named,CIk,C,P,O¢)
[Registered Output,Combinatorial Feedback]

ROIF(Named,CIk,C,P,O¢)
[Registered Output,]/O Feedback]

ROLF(Named,CIk,C,P,Oe,lle)
[Registered Output,Latched Feedback]

RONF(Named,CIk,C,P,O¢)
[Registered Output,No Feedback]

RORF(Named,CIk,C,P,O¢)
[Registered Output,Registered Feedback]

SONF(Names,Clk,Namer,C,P,O¢)
[SR Output,No Feedback]

SOSF(Names,Clk,Namer,C,P,O¢)
[SR Output,SR Feedback]

Boolean Equation Entry

BE-25

Table BE-1. Input, /O, and Bus I/0 Syntax (Part 3 of 3)

1/0 Primitives: (continued)

Namep,Name = TOIF(Namet,Clk,C,P,O¢)
[T Output,I/O Feedback]

Namep = TONF(Namet,Clk,C,P,O¢)
[T Output,No Feedback]

Namep,Name = TOTF(Namet,CIk,C,P,0¢)

[T Output,T Feedback]

Bus /O Primitives:

Name0O,Namel,Name2,Name3,
Name4,Name5,Name6,Name7 = LINP8(NameOp,Name1p,Name2p,Name3p,
Named4p,Name5p,Name6p,Name7p,Ws,We)

[8-Bit Latched Input]
Name0O,Namel,Name2,Name3,

Name4,Name5,Name6,Name7 = RINP8(Name0Op,Namelp,Name2p,Name3p,
Name4p,NameSp,Name6p,Name7p,Ws,We)
[8-Bit Registered Input]

NameObp,Name1bp,Name2bp,Name3bp,

Name4bp,NameSbp,Name6bp,Name7bp = BUSX(Nameibus, Rs,O¢)

[Bus Transceiver]
Name0O,Name1,Name2,Name3,

Name4,Name5,Name6,Name7 = LBUSI(Ibus,Ws,We)
[Latched Bus Input to Logic]

Nameibus = LBUSO(Name0d,Name1d,Name2d,Name3d,
Name4d,Name5d,Name6d,Name7d,Clk,Ole,Re)

[Latched Bus Output from Logic]
Name0,Name1,Name2,Name3,

Name4,Name5,Name6,Name7 = RBUSI(Nameibus, Ws,We)

Notes:

1 Each pin name corresponds to the node name of the same number, e. g., Name0
corresponds to NameOp.

BE-26 A+PLUS User Guide

Naming Conventions

This section describes naming conventions we recommend for
defining the Network Section of a design. Tables BE-1 and BE-2
illustrate the recommended naming conventions. (Special naming
conventions for Active Low signals are discussed in the next section.)
Table BE-3 shows legal pin and node name characters.

Inputs

Namep represents a device pin name. It must have a corresponding
entry in the Inputs or Outputs Section. Name represents an input to
the device logic array. It appears on the right-hand side of equations.
Whenever possible, the pin name should be the same as the array
input name (i.e., node name) to allow pin names to be used directly in
Boolean equations, e.g., x = INP(x).

I/0 (No Feedback)

The input to the I/O primitive should be the same as the output pin
name with ¢, d, j, k, r, s, or t appended to represent the output type.
(The last letter indicates combinatorial feedback or the flipflop type.)
Each input must appear exactly once as the left-hand side of an
equation.

1/0 (With Feedback)

The pin name should be the same as the I/O feedback node name,
allowing the pin name to be used directly in the Boolean equations.
The input to the 1/0 primitive should be the same as the output pin
name with ¢, d, j, k, r, s, ort appended to represent the output type.
(The last letter indicates combinatorial feedback or the flipflop type.)
Each input must appear exactly once as the left-hand side of an
equation. If dual I/O feedback is used, the feedback node name should
be the same as the input and output pin names with f appended to
represent internal registered feedback.

Boolean Equation Entry BE-27

BE-28

/0 (No Output)

The input to the /O primitive should be the same as the primitive
feedback node name with ¢, d, j, k, r, s, or t appended to represent
the feedback to the logic array. (The last letter indicates combinatorial
feedback or the flipflop type.) Each input must appear exactly once as
the left-hand side of an equation. Note: if buried register output names
are assigned to a pin, they may not conflict with other output pin
names.

Bus /O Primitives

NameOp through Name7p and NameObp through Name7bp represent
device pin names. You are not required to use the numbers 0
through 7; they merely indicate the relative position of the signal on
the bus. In the LINP8 and RINP8 primitives, Name0 through Name7
represent the node names that correspond to the pins NameOp
through Name7p, respectively. Nameibus represents the name for the
internal 8-bit wide bus. Each input must appear exactly once as the left-
hand side of an equation.

A+PLUS User Guide

Table BE-2. Recommended Naming Conventions

TYPE SYNTAX
Input Name = INP(Namep)
Example: ENABLE = INP(ENABLE)
vo Name = RONF(Named,Clk,C,P,O¢)
(No Feedback) | Example: CUPFULL = RONF(CUPFULL4,CLOCK,

GND,GND,VCC)

/o] Namep,Name = RORF(Named,CIk,C,P,Oe)

(With Feedback) | Example: DROPCUP,DROPCUP = RORF(DROPCUPd,

CLOCK,GND,GND,VCC)

/0 Name = NOCF(Namec)

(No Output) Example: ABBY = NOCF(ABBYc)

Note: The maximum length for any name is eight characters. Both capitals
and lowercase are allowed and significant, i.e., “NODEA” is not equal
to “nodeA.” Names may not span lines.

Boolean Equation Entry BE-29

Table BE-3. ADF Legal Pin Name and Node Name

Characters

FE[PBHAINO~NTNOT 0N
= 8
m% HMHN®O 0T O S~ md— E SO AT H »e
Le
Mm
<Z [<pUARLOT~~MASZOrMOKnED >R
w ™= E o T v 3> B K >N —2
£33
M~
_m.m STUVWXYZ[\]A ~\ <O OT O 80
88
2 AV AS<AUDAREKOT~~MASZ 00O
a
<7

- #HP- ¥ +1 ~O—~NNTNO~0RN

A+PLUS User Guide

BE-30

Active Low Signals

To specify Active Low inputs and outputs, we recommend that you
adhere to the following convention (an example is given below):

1€ The Read Strobe and Write Strobe input pins (/CRS
and /CWS) for BUSTER (EPB1400), as well as the Rs
and Ws inputs to Bus I/O primitives, are predefined as
Active Low signals. Therefore, it is not necessary to
perform the signal inversion described below to
implement Active Low logic.

(1) In the Inputs or Outputs Section, identify the Active Low signal
by prefixing an ‘n’ to the pin name (e.g., “nSIGX”).

(2) Specify an intermediate node name that retains the ‘n’ in the pin
name (e.g., nSIGX = INP(nSIGX)).

(3) Invert the intermediate node and drop the ‘n’ to obtain “SIGX”,
(e.g.,SIGX = NOT(nSIGX)).

(4) Use “SIGX” in the Equations Section.

By following this procedure, you will implement an Active Low input or
output. Example:

INPUTS:
nSIGIN % Active Low input %

OUTPUTS:
nSIGOUT % Active Low output %

NETWORK:
nSIGIN
SIGIN

INP(nSIGIN) % Creates an intermediate node %
NOT(®nSIGIN) % Inverts the input %

nSIGOUT
nSIGOUTc

CONF(nSIGOUTc,) %Creates an inverted intermed. node%
NOT(SIGOUT) % Passes the inverted node to output %

EQUATIONS:
A = SIGIN *B; % When the pin is low, SIGIN is true %
SIGOUT = C+D % When SIGOUT is true, the pin is low%

Boolean Equation Entry BE-31

It is also possible to identify an Active Low input or output
by attaching a slash (/), exclamation point (!), or single
quote (') to the pin name (e.g., /SIGX, !SIGX, SIGX').
Note, however, that these characters function as NOT-
operators only when used in Boolean equations. Since
node names must be alphanumeric (and therefore may
not include the /,!, or'), the intermediate node name
defined in the Network Section should be of the form
“‘nSIGX” (e.g., nSIGX = INP(/SIGX)).

Equations Section Requirements

BE-32

The Equations Section implements Boolean logic. Equations Section
requirements are as follows:

The keyword EQUATIONS: must be the first word in the
section.

Each equation must have exactly one node name on the left side
(possibly complemented), followed by an equals sign (=), a
Boolean expression, a semicolon (;), and <Enter>.

Equations may span lines at any point except within a name.

The fan-out of each Boolean equation is unlimited.

Boolean equations need not be in sum-of-products form.
Parentheses are used to indicate grouping.

The equations may use any of the following operators:

/ or ! or ' for NOT
%

or & for AND
+ or # for OR
) for establishing precedence

The / and ! NOT-operators are prefixed and the ' NOT-operator is
postfixed. Example:

SIGOUT = |IN1 * /IN2 * !IN3 * (IN4' + INS);

A+PLUS User Guide

L] Entire equations may be substituted into the right-hand sides of
other equations by substituting intermediate variables.

The following example uses TERM as an intermediate variable
(note that TERM need not be defined before being used):

D1 = Oal * Oa2 * (Fbkl' + Fbk2) + TERM;
TERM = Fbk2 + Oal * Fbkl;

The compiler converts this to:

D1 = Oal * Oa2 * (Fbkl' + Fbk2) + Fbk2
+ Oal * Fbkl

L] BUSTER (EPB1400) macrocells allow Boolean equations
feeding the Clock (Clk) and Output Enable (Oe) inputs to I/0O
primitives to contain up to two product terms; Clear (C) inputs are
limited to one product term. The logic feeding the Output Latch
Enable (Ole), Output Enable (Oe), Read Enable (Re), and Write
Enable (We) inputs to Bus I/0O primitives (namely, BUSX,
LBUSI, LBUSO, LINP8, RBUSI and RINP8) may contain up
to two product terms after minimization has taken place.

The architecture of other Altera parts allows Boolean equations
feeding the Clear, Clock, Preset, Latch Enable, and Output
Enable inputs to I/O primitives (i.e., C, CIk, P, Le, and Oe) to
contain only one product term. See Appendix A in the A+PLUS
Reference Guide for specific information.

Example:

RORF
D Q PIN-NAME

[¢

Clr

Clr = Oal * Fbk2' * Qa3;

= Boolean equations cannot feed back to themselves without first
going through an 1/O primitive or buried register. This means that
the left-hand side of an equation can never appear in the right-
hand side or in an intermediate term of the right-hand side of the

Boolean Equation Entry BE-33

same equation. For example, cross-coupled latches cannot be
constructed within a macrocell using only Boolean expressions.
To obtain combinatorial feedback, you must use an I/O primitive
(e.g., COCF, NOCF, ROCF, COIF, ROIF, TOIF). Example:

NOCF
L not

End ‘Statement

This statement terminates the ADF. It consists of the following string:

END$ <Enter>

BE-34 A+PLUS User Guide

Additional Guidelines

In addition to the conventions and requirements for the individual ADF
sections, you should note the following guidelines:

White space or comments may be inserted between syntax
elements to make reading easy. Comments are enclosed by
percent symbols (%).

<CR><LF> is equivalent to <Enter>.

Assigning pin numbers to both inputs and outputs may speed
the fitting process.

Automatic part selection will not be successful if you specify pin
assignments or if the design contains too many inputs, outputs,
or macrocells.

Combinatorial feedback from a macrocell to itself may cause
unpredictable results.

The Altera Design Processor does not support the product-term
sharing feature of the EP1210. This feature is accessed through
LogicMap II.

A+PLUS offers two special features: (1) Turbo-Bit and (2)
Security Bit.

(1) The Turbo-Bit is a control bit for choosing speed and
power characteristics of an EPLD. It can be set to ON or
OFF in the Declarations Section. If the Turbo-Bit status is
not specified, it will default to ON. Before programming an
EPLD, LogicMap also allows you to toggle the Turbo-Bit
ON or OFF. (Note: the BUSTER and EP310 parts do not
support the Turbo-Bit option. LogicMap will ignore Turbo-
Bit information entered for these EPLDs.)

(2) The Security Bit prevents a device from being interrogated
or inadvertently reprogrammed. It can be set to ON or OFF
in the Declarations Section. If the status of the Security Bit
is not specified, it will default to OFF. Before programming
an EPLD, LogicMap prompts you to indicate whether you
wish to turn the Security Bit feature ON or OFF.

Boolean Equation Entry BE-35

Figures BE-5, BE-6, and BE-7 show sample ADFs for the EP1210,
EP600, and EP320, respectively.

BE-36 A+PLUS User Guide

<

7445 1-OF-10 DECODER
OPTIONS: TURBO = OFF ¢—
PART: EP1210

Header Section is
optional

Turbo-Bit set to OFF;
Security Bit defaults to
OFF

Physical pin assignments
not specified

INPUTS:

A3, A2, Al, A0 <%

OUTPUTS: /
/09, /08, /07, /106, /05, /04, /03, /02, /01, /00
NETWORK:

A3 = INP(A3) % Input Signal %

A2 = INP(A2) % Input Signal %

Al = INP(A1) % Input Signal %

A0 = INP(AO) % Input Signal %

/09 = CONF(nO9c,) nO9c = NOT(O9)
/08 = CONF(nO8c,) nO8c = NOT(O8) @—
/07 = CONF(nO7c,) nO7c¢ = NOT(O7)
/06 = CONF(nO6c,) nO6c = NOT(O6)

/05 = CONF(nO5c,) nO5c = NOT(O5)

/04 = CONF(nO4c,) nO4c = NOT(0O4)

/03 = CONF(nO3c,) nO3c = NOT(O3)
/02 = CONF(nO2c,) nO2c = NOT(02)

/01 = CONF(Olc,) nOlc = NOT(O1)
/00 = CONF(nOOc,) nO0c = NOT(OQ)
EQUATIONS:

00 = A3 & A2' & Al' & AD';

Ol = A0 & A3' & A2' & Al';

02 = Al & AD' & A2' & A3';

03 = A0 & Al & A2' & A3’

04 = A2* A0 *Al'*A3; q—"
05 = A2 * A0 * Al' * A3';

06 = A2 * Al * A0' * A3

O7 = A2 * Al * A0 * A3';

08 = A3 * A2' * Al' * AQ';
09 = A3 * A0 * A2' * Al';
END$

Figure BE-5.

Boolean Equation Entry

Output Enable set to
default; inverted node
names give Active Low
outputs

Different Boolean
operators allowed

Sample ADF for EP1210

BE-37

DESIGNER NAME
COMPANY NAME
9/30/87

1
A
EP600

4 BIT COUNTER

PART: EP600
INPUTS: CLOCK@2, 'HOLD@11

OUTPUTS: Q1, Q2, Q3, Q4 <\

NETWORK:

CLOCK = INP(CLOCK)

CLOCKa = CLKB(ASY) «¢

nHOLD = INP('HOLD) % Intermed node %

HOLD
QL,Ql
Q2,Q2
Q3,Q3
Q4,Q4

% HOLD = LOW THEN STOP COUNT @—

HOLD = HIGH THEN COUNT %
EQUATIONS:
D1t = /HOLD;
D2t = QI;
D3t = Q1 * Q2;
D4t = QI * Q2 * Q3;
ASY = /HOLD * CLOCK; #$———
ENDS$
Figure BE-6.

BE-38

= NOT(nHOLD) % Active Low %
TOTF(D1t,CLOCKa,),)

TOTF(D3t,CLOCKa,,,)
TOTF(D4t,CLOCKa,,,)

TOTF(D2t,CLOCKa,,) <€¢——

Active Low input symbol

Pin assignment

Turbo-Bit and Security Bit status
not declared (default to ON and
OFF, respectively)

Active High outputs

Asynchronous clock (use of
CLKB primitive is optional)

User comments delimited
by % symbols

Gated clock (1 product term)

Sample ADF for EP600

A+PLUS User Guide

SEPTEMBER 30, 1987
P7022
A

EP320 4-BIT COUNTER WITH 2 INPUT MUX EPLD DESIGN SPECIFICATION

OPTIONS: TURBO = OFF, SECURITY = ON

PART: EP320
INPUTS: CLK@1, A0@2, A1@3, A2@4, A3@5, B0@6, B1@7, Allinputs and
B2@8, B3@9, nOE@11, 10@18, 11@13, C1@19 outputs have
‘> assigned
OUTPUTS: CO@12, Q3@14, Q2@15, Q1@16, Q0@17 pin numbers
NETWORK:
/ Multiple Network
CLK = |INP(CLK) I1 =INP(I1) C1 =INP(C1) Statements on
10 = INP(I0) ~ Al1=INP(Al) A2=INP(A2) A3 =INP(A3) the same line
A0 = INP(AO) BI1=INP(B1) B2=INP(B2) B3 = INP(B3)
BO = |INP(BO) nOE =INP(nOE) OE = NOT(nOE) <@——— Output Enable
Q0,Q0 = RORF(Q0d,CLK,, OF) control (1
Q1,Q1 = RORF(Q1d,CLK,,,OF) product term)
Q2,Q2 = RORF(Q24,CLK,,OE) \
Q3,Q3 = RORF(Q3d,CLK,, OF) Clear and Preset
Cco = CONF(COc,VCC) set to default
condition
EQUATIONS:
/Q0d = /11*/10*Q0+/11*10*/A0+11*/10*/B0+11*10*/C1*/Q0 @ Inverting left-
+ [1*[0*C1*Q0 ; hand side of
equation is
/Q1d = /11#/10%/Q1+/11*¥10%/A1+11*/10*/B1+11*10*/C1*/Q1 equivalent to
+ 11*¥10%/Q0*/Q1+11*10*C1*Q0*Ql ; inverting all of
right-hand side

Figure BE-7. Sample ADF for EP320 (Part 1 of 2)

Boolean Equation Entry BE-39

/Q2d = /11*/10%/Q2 % HOLD Q2 %

+ /11*10%/A2 % LOAD A2 %
+ 11*/10%/B2 % LOAD B2 %
+ I1*10%/C1%/Q2 % HOLD Q2 IF NO CARRY IN %
+ I1*¥10%/Q0*/Q2 % HOLD Q2IFQ0 =L %
+ I1*¥10%/Q1%/Q2 % HOLD Q2IFQ1 =L %
+ I1*I0*C1*Q0*Q1*Q2 ; % COUNT IF CARRY IN AND Equations
Q0,Q1,Q2 = H % may span
/Q3d = /T1%/10%/Q3 %HOLD Q3 (MSB) % “@—— soveral
+ /I1%10%/A3 % LOAD A3 % fnes
+ I1#/10%/B3 % LOAD B3 %
+ I1*¥10%/C1%/Q3 % HOLD Q3 IF NO CARRY IN %
+ T11*10%/Q1*/Q3 % HOLD Q3IFQ0 =L %
+ [1*10%/Q2*/Q3 % HOLD Q3IFQl =L %
+ I1*10*C1*Q0*Q1*Q2*Q3 ; % HOLD Q3IFQ2=L %
% COUNT IF CARRY IN AND
Q0,Q1,02,Q3 = H %
/COc = /CI + /Q0 + /Q1 % CARRY OUT IF CARRY IN %
+/Q2 +/Q3 ; % AND Q0,Q1,Q2,Q3 = H %
ENDS$

Figure BE-7. Sample ADF for EP320 (Part 2 of 2)

BE-40 A+PLUS User Guide

Functional Simulator
Version 2.5
September 1987 P25-01769-02

Changes are made periodically to the information contained in this manual.
These changes will be incorporated into subsequent editions.

Altera Corporation
3525 Monroe Street
Santa Clara, CA 95051
(408) 984-2800
TELEX: 888496

Copyright © 1985, 1986, 1987 Altera Corporation. All rights reserved.

No part of this manual may be copied or reproduced in any form or by any
means without the prior written permission of Altera Corporation.

A+PLUS, SAM+PLUS, LogicMap, Turbo-Bit, MacroMuncher, SAM, BUSTER,
EP310, EP320, EP600, EP610, EP900, EP910, EP1210, EP1800, EPB1400,
EPS444, and EPS448 are trademarks of Altera Corporation. LogiCaps is a
registered trademark of Altera. WordStar is a registered trademark of MicroPro
Corporation. Fido is a trademark of Tom Jennings. MS-DOS is a trademark of
Microsoft Corporation. FutureNet DASH is a trademark of FutureNet
Corporation. PC-CAPS and PC-LOGS are trademarks of Personal CAD
Systems, Inc. IBM Personal Computer is a registered trademark of
International Business Machines Corporation.

Read This First...

The documentation for the Functional Simulator version 2.5 contains
the following sections:

Functional Simulator (FSIM)
FSIM Reference

Virtual Logic Analyzer
FSIM Messages

FSIM Glossary

Please insert them in your A+PLUS User Guide after the tab
Ill. Simulation.

At the back of the package, you will find a Warranty Card. Please fill out
the Warranty Card, insert it into the Registration Envelope with the
Altera Registration Card, and mail it to Altera. You will receive future
update information for Functional Simulator software only if you mail this
card.

I Version 2.5 of the Functional Simulator supports JEDEC
files generated by A+PLUS 5.0. JEDEC files created by
earlier versions of A+PLUS are not compatible with FSIM
version 2.5.

Manual Updates

Altera documentation is updated with Change Pages, Section
Reprints, and a READ.ME file.

Change Pages are issued for minor changes to the manual. New
information is identified with vertical change bars in the margins next to
the changed text. In addition, the date of issue is printed at the bottom
of each page.

Section Reprints are issued if a section requires a substantial
number of changes. The date of issue is indicated at the bottom of
each page.

A READ.ME File is provided on the A+PLUS INSTALL diskette.
This file contains information about recent changes to the Functional
Simulator software that are not yet reflected in the manual.

Contents

Read This First iii
Manual Updates v

Functional Simulator

Functional DescCriptionveeieiirieiiien e, FS-3
The Simulation ProCesscc.ouuviuiiiiiiiiiiiiieie e, FS-6
Phase 1 ..o e e FS-8
Phase 2 ... FS-9
Phase 3 ..o e FS-10
SIMUIALOTr INPULS.......eeuiiiiiiiiiir e FS-11
JEDEC File INPULeeeiiiiiiieiieee e, FS-11
Vector File Inputouveeeiiiceee e FS-11
Legal Logic Level Characters........cccceeeviieiiinieiiiinnnnne. FS-12

Legal Input Vector Formatccovvveiiviiiiiiiieeninennnnn. FS-12

Pattern Format.........c.oouimiiiiiiiii e FS-12

Table Formatoooovuiiiiiiiiiiie e FS-13

Command File INPpUt............oeviiiiiiiiiiiee e, FS-14
Simulator OUIPULS..........uviiiiii FS-15
LOG File...o oo FS-15

Functional Simulator Contents-1

Contents-2

Functional Simulator (Continued)

WatCh File ..o FS-15
PIot File...ooviieiiee e FS-15
Save File. ..o FS-16
Sample Session — Interactive Mode.........ccccoooiiiiiiiiinn FS-17
Phase 1 — Setup Commands............ccoeeeeeiiiiiiiiiiieiiieeeis FS-19
Phase 2 — Control Commands............c.ccoeeeveeeiiiieieiieee, FS-27
Phase 3 — Execution Commands...........cccceeeveeveevvineeeeno. FS-29
Sample Session — Batch Mode............coccoiiiiiiiiiii. FS-37

FSIM Reference

FSIM Referenceuvuiiiiiiiiiiiiiiieee e FS-41
Vector Processing and the CYCLE Command FS-42
Predefined Input Vector Sequencescccooeoeveiiiieenniiii. FS-46

Binary Counting Sequence...........coccviiiviiiiiiiiineennin, FS-46
Rotating Bit Sequence............cccooiiiiiiiiiiiiiiis FS-46
Gray Code SEqUENCEuuiieiiiiiiiieeieiien e FS-47
Glitch Generator Sequence........cccoevevviieiiiireeiiieeeen. FS-47
Propagation of Undefined Node Levelsccccceeeeenniin. FS-48
Logic FUNCHIONS.......ccoiiiiiiiiii e FS-48
Flipflops and LatChes...........coeeviiiiiiiiiiiicii e, FS-48
Output Enables............oovviiiiiiiee e FS-48
Bidirectional Pinsoooviiiiiiiii e, FS-49
BUS POrt Pinsoooiiiiiiiciee e FS-50
Externally Connected Clock Pins............ccooiiiiiiiin FS-51
Referencing Predefined Node Namesc..cccoeviiiiiiniin. FS-51
Referencing Subnodesc.ceiviiiiiiiiiiiiiiiinicc e, FS-52
Reserved WOrds.........cooovvviiiiieiieeiiiii e FS-53

Command ReferencCe........ooooeuuiiiiiiiiiiiiiii e FS-54

Command FOrmatoocooiiiiiiiii e FS-55
NOde List....uiiie e FS-55
Node Value Listcccoovviiiiiiiiiiiie e FS-55
Cycle Value........oooeeiiiiiiiii e FS-56
Command Listccooeiiiiiiiii FS-56
Pathnamecoooviiiii e FS-56

BEGIN. ..o e FS-58

BREAK ... e FS-59

CLEAR . FS-61

CONTINUE (CONT) .ottt ettt FS-62

CYCLE .. o FS-63

DESCRIBE (DESC)....cuiiiiiiiiiiiee et FS-64

DISPLAY (DISP) ..o FS-65

DOS . FS-66

Functional Simulator

EXECUTE (EXEC) «..veveeeeeee oo FS-68
FORCE ...t FS-69
GROUP. ... FS-70
HELP oo FS-71
INITIALIZE (INIT) oo FS-72
LOGFILE (LOG) .- v FS-73
PATTERN (PAT)..covooeoeeeeeeeee e FS-74
=10) USROS FS-75
QUIT e FS-77
RESTORE (REST).c.eoeeeeeeeeeeeeeseeeeeeeseeeeenesesee e, FS-78
SAVE ..o FS-79
SIMULATE (SIM).eoeeeeeeeeeeeeeeeee oo FS-80
STATUS .o, FS-81
SYMBOLS (SYMB) ...t FS-82
VECTOR (VEC) ..o, FS-83

TEW e FS-84
WATCH oo, FS-85

Virtual Logic Analyzer

Functional Descriptionooooiiiiiiiii e LA-2
Invoking the Virtual Logic Analyzer........ccccooooeiiviiieiiiiiiiiiee, LA-4
FUll WINAOW......cooiiiiiiie e LA-5
Window Display Control...........cceeevviveiiiiiiiiiieiiiieeeceee e LA-7
4o To] 1111 oo RPN LA-7
Panningcooiiiiii e LA-8
Node CUISOr.....coiiii e LA-8
Waveform CUrsSorsooevviiieeiiiiiie e e LA-9
SeAarChiNG .ooeiii e LA-11
Splitting the Windowccooooviiiiiiiii e, LA-11
Node and Bus Control..........cccccveieeeiiiiiiciieeeceeeeeee e LA-14
NOAES. ..o LA-14
BUSES .. LA-15
Summary of VIEW Subcommands.........ccccccoevviiiiiiiiiiiiiccnn. LA-17
Window Manipulation Commandscccoovviviieiiineninnn... LA-19
Waveform Manipulation Commandscccooeeeiiiennne LA-21
FSIM Messages
Error Messagescooveveviiiiieiiiee e, Messages-2
Warning Messagescocoovvvieeeeeviiiiiee e, Messages-12

FSIM Glossary

Functional Simulator Contents-3

lllustrations

Figure

FS-1.
FS-2.
FS-3.
FS-4.
FS-5.
FS-6.
FS-7.
FS-8.
FS-9.
FS-10.
FS-11.
FS-12.

LA-1.
LA-2.
LA-3.
LA-4.
LA-5.
LA-6.

Functional Simulator

Page
The Functional Simulator...........ooveeeeeeeeeieeeeeeeeeee, FS-5
The Simulation ProCessouueeeeeeeeeee e, FS-7
BEVDIS Sample Circuitc.ouevieeriiiiiieeceiieeie, FS-18

Manually Created Design Input and Output Waveforms FS-20

Pattern Format Vector File for BEVDIScccovennai... FS-21
Table Format Vector File for BEVDIS.........coeevevennenn... FS-22
Input to the Keyboard ...l FS-31
Screen Output ... FS-32
Output to the Log File BEVDIS.LOG...........cevvnnnee.. FS-33
Output to the Plot File BEVDISWAVccoiiiennl. FS-34
Output to Watch File WATCH.OUT............cooovvvvnnnnnn. FS-35
Command File BEVDIS.CMD for Batch Mode.............. FS-38
Virtual Logic Analyzer.........ccoooeeeiiiiiiiiiieeeicee e LA-2
FUull Window SCreenooouveeeeeeiee e, LA-5
Node and Waveform Cursors.......couueeeeveeeeeeeeeeeaenennnn. LA-8
Relative Cursor Location........cceeveeveeiieeiieeeieeaieaan. . LA-10
Split WIndOWooiiii e, LA-12
Bus Waveformoooe e LA-16

Contents-5

Tables

Table

Page
FS-1. Simulation CommMandscoeeeeeeeeeeiee FS-57
LA-1. VIEW Subcommands........ccuuueeeeeeeeeeeeeeeeoeee LA-17

Functional Simulator Contents-7

Functional
Simulator

This package describes the Altera Functional Simulator and the
process of simulating a design created with A+PLUS software. You will

find:

L] A functional description

L] A description of the simulation process

u A detailed description of required inputs and outputs

= A sample session that guides you through the simulation
process (interactive and batch modes)

= A reference section describing all available commands and
advanced features

= A section describing the features and use of the Virtual Logic
Analyzer

" A glossary of simulation terms

Functional Simulator FS-1

n A list of Functional Simulator error and warning messages,
including suggestions for corrective action

@ Refer to Installation in the A+PLUS User Guide for
instructions on how to install the Functional Simulator.

FS-2 A+PLUS User Guide

Functional Description

Altera’s Functional Simulator software is a tool for testing the logical
operation of your EPLD design. It uses specified design and part
information to model the operation of an Altera EPLD before the
design is actually committed to hardware.

The Functional Simulator uses the following input files:

(1) A JEDEC File (with the extension .JED) as generated by the
Altera Design Processor.

(2) Afile containing vectors (with the extension .VEC) that are used
to simulate input logic levels for the EPLD. The Vector File is a
“1’s and 0’s file” describing the input conditions.

(3) A file containing commands (with the extension .CMD) that
guide the simulation process. This file consists of a list of
instructions that are used to run the Functional Simulator in batch
mode. (In interactive mode, these commands are entered in
response to prompts displayed by the Functional Simulator, and
the Command File is not required.)

The Functional Simulator uses these inputs to simulate the behavior of
the design based on the input vectors. During this process, the
Functional Simulator may be directed to create the following output
files:

(1) A Waveform Output File (with the extension .WAY) that contains
a graphical waveform description of the nodes.

(2) A Vector Table Output File (with the extension .TBL) that
describes the state of the specified nodes.

(3) A Log File (with the extension .LOG) that records the commands

executed by the Functional Simulator. This file may be reused in
future simulation runs.

Functional Simulator FS-3

FS-4

(4) A Save File (with the extension .SAV) that saves a simulation
environment for future use.

You may choose one of two operating modes:

] Interactive mode
L] Batch mode

In either mode, the Functional Simulator describes the logic of the
design. In interactive mode, the simulation is performed step by step as
you enter commands from the keyboard. You are able to break the
simulation process, review its status, and then continue. In batch
mode, on the other hand, you enter the input files, and the Functional
Simulator performs the simulation and automatically sends the output
to an output file. Afterwards, you are notified of the status of the
simulation.

Figure FS-1 shows a block diagram of the Functional Simulator.

A+PLUS User Guide

DASH
Schematic
Capture

LogiCaps
Schematic
Capture

Netlist

Converter

A+PLUS Design Entry

Entry

Boolean
Equation
Entry

State
Machine
Entry

Converter

EPLD

Logic
Programmer

4

LogicMap

A

Altera Design
Processor
(ADP)

Command
File
*CMD

Functional
Simulator

Functional Simulator

Figure FS-1.

The Functional Simulator

FS-5

The Simulation Process

Functional simulation occurs in three phases. In Phase 1, you set up
the environment for the simulation. In Phase 2, you enter the desired
simulation conditions (if any) and the commands that indicate what
action the Functional Simulator should take when these conditions are
met. In Phase 3, you enter the commands that display information on
the simulation status and run the actual simulation.

Figure FS-2 illustrates the simulation process, including the commands
that are appropriate for each phase. Detailed information on each
command is available in the section tabbed FSIM Reference under
Command Reference. Each simulation phase is described below.

I For definitions of simulation terminology, refer to the
section tabbed FSIM Glossary.

FS-6 A+PLUS User Guide

Set up the
environment
for simulation

Optional commands:

BEGIN LOGFILE
CYCLE PLOT
EXECUTE RESTORE
GROUP SYMBOLS
HELP VECTOR
INITIALIZE WATCH

»L

Enter the desired
simulation condi-
tions, including
commands that
indicate what to do
when conditions
are met

Optional commands:

BREAK PATTERN
CLEAR PLOT ON/OFF
CONTINUE WATCH ON/OFH
ECHO

FORCE

HELP

Simulate and
display information
on simulation

Required command:
SIMULATE
Optional commands:
DESCRIBE SAVE

status
DISPLAY STATUS
DOS VIEW
HELP
!
Figure FS-2. The Simulation Process

Functional Simulator

FS-7

Phase 1

The first phase of the simulation process involves setting up the
environment for the simulation, which is determined with the
commands listed below. Once you have specified input vectors with
the VECTOR or PATTERN command, all other Phase 1 commands
are optional. (Remember that although the Functional Simulator
symbolically tests the logic of your design, this representation is only as
good as the input you provide by specifying test vectors.)

L] The VECTOR command specifies the Vector file (.VEC) to be
used for a particular simulation. (Your .VEC file(s) may be
entered with a standard text editor.)

= As an alternative to using the VECTOR command, you may use
the PATTERN command to enter vector patterns.

= The CYCLE command specifies the number of vector clocks in a
cycle. (Refer to Vector Processing and the CYCLE Command in
FSIM Reference.)

. The INITIALIZE command sets nodes to a specific level.

. The GROUP command groups nodes (for example, the
elements of a bus) so that they may be addressed as a single
group during the simulation. (Note: groups must be defined
before you enter the VECTOR command.)

. The SYMBOLS command displays all node names being used.

= The PLOT command prints the simulation output as a waveform.
n The WATCH command prints the simulation output as a table.
L] The LOGFILE command records all commands entered during

simulation into a file. Later, you may use this file as the input to an
EXECUTE command.

= The RESTORE command loads a previously saved simulation.
- The BEGIN command resets the Functional Simulator.

. The HELP command may be used at any time to display help
information.

FS-8 A+PLUS User Guide

Phase 2

The second phase of the simulation involves entering the desired
simulation conditions (if any) and the commands that indicate what
action the Functional Simulator should take when these conditions are
met. You may use any of the following commands (all Phase 2
commands are optional):

The BREAK command allows you to set and check a variety of
simulation conditions. For example, you may verify logic
conditions in your design; check for faulty logic conditions:
monitor the state of nodes during a certain time period; or
change input vectors depending on the logic levels or cycle
values reached during a simulation.

Using breakpoints set with the BREAK command, the PLOT
and WATCH commands allow you to output selected portions of
the simulation in wave or table format, respectively.

The CONTINUE command instructs the Functional Simulator to
continue after it has evaluated a specific breakpoint and found
the specified conditions to be true.

The CLEAR command removes one or all set breakpoints.

The FORCE command forces a certain node to a specific level.
This command is similar to the INITIALIZE command, but while
INITIALIZE may be used only at cycle 0, FORCE may be used
at any cycle.

The ECHO command allows you to write a text string to the
terminal while you are executing a Command file in batch mode.

The HELP command may be used at any time to display helpful
information on the simulation commands.

Functional Simulator FS-9

Phase 3

FS-10

The final phase of the simulation involves entering the commands that
display information on the simulation status, and running the actual
simulation.

After specifying the conditions for running the simulation, you must

enter

the SIMULATE command. If you do not specify a cycle value,

the simulation will run for one cycle. Otherwise, you enter a decimal
number indicating the highest cycle to which the simulation should run.
All other Phase 3 commands are optional.

s>

You may simulate to any cycle greater than the current
cycle. For example, if you are at cycle 1, you may simulate
to any cycle above 1; if you are at cycle 100, you may
simulate to cycle 120 but not to cycle 90.

The DESCRIBE command provides information about nodes
and groups.

The STATUS command displays information on the current
status of the simulation.

The SAVE command saves the current state of the simulation.

The DISPLAY command displays the Log File, Plot File, Watch
File, or Vector File.

The HELP command displays helpful information on all
simulation commands.

The VIEW command invokes the Virtual Logic Analyzer and
displays the results of the simulation in graphical waveform. You
may enter the VIEW command to analyze your results at any time
during or after simulation. (Refer to the section tabbed Virtual
Logic Analyzer.)

The DOS command temporarily interrupts the Functional
Simulator and executes any command valid in DOS.

QUIT exits the Functional Simulator and returns you to DOS or
to A+PLUS, i.e., to the environment where it was invoked.

A+PLUS User Guide

Simulator Inputs

The Functional Simulator uses three input files to process your design:

u JEDEC File (.JED) as generated by the Altera Design Processor

= Vector File (.VEC)—or vector patterns entered with the
PATTERN command

L] Command File (.CMD)—used only in batch mode

The input requirements for these files are described below.

JEDEC File Input

The JEDEC File generated by the Altera Design Processor (ADP)
describes your design. A valid JEDEC File (which has the extension
JED) indicates that your design has no syntactic errors; simulation
helps you determine whether your design contains any logic errors.

Vector File Input

The Vector File, which is entered with a standard text editor, describes
the input waveforms on which the simulation is based. The input
vectors define the simulation process by specifying logic levels of
nodes in a design. Input levels drive the input pins and determine the
internal logic levels. (Expected output levels are not definable.)

All input vectors are stored in vector files with the default extension
.VEC. You may switch from one vector file to another during the
simulation, although only one file can be active at any given time. The
Functional Simulator reads the active vector file and builds a temporary
file for the specified vectors.

Functional Simulator FS-11

FS-12

Legal Logic Level Characters

The legal characters indicating different logic levels of vectors are as
follows:

1 Logic high

0 Logic low

Z High impedance (no input to pin); used for bidirectional
pin when pin is used for output.

0-9, A-F Used for groups with an assigned number base (binary,
octal, hexadecimal, or decimal values).

X Undefined

Legal Input Vector Format

Two formats—Pattern and Table formats—are available for specifying
input conditions. You may use either format but not both in a single file.

To avoid repetition of lengthy or common patterns, you may group
individual nodes and specify repeating patterns.

I (1) To group individual nodes, you must use the
GROUP command during Phase 1 of the simulation
process before entering the VECTOR command.

(2) Only one vector table is allowed per file.

Pattern Format

The pattern format begins with the keyword PATTERN:, followed by a
column of node names. Each node name is followed by the sequence
of values specified for it. The inputs for a three-bit binary counter may
therefore be expressed as follows:

PATTERN:
nodec
nodeb
nodea

o n
[— I —]
S -
S -
[)
A
e O
- D
ok

A+PLUS User Guide

This syntax allows you to repeat all or part of an entire pattern. The
repeat factor, indicated by an asterisk (*), is a decimal number showing
how many times the pattern is to be repeated. The pattern to be
repeated is enclosed in parentheses followed by the repeat factor. An
* without a number indicates an infinitely repeating pattern (for
example, (10)* = 101010 ...).

The node patterns of the three-bit counter shown above may therefore
also be expressed as follows (note that nested patterns are also

allowed):

nodec = (01)*4 ;

nodeb = (0011)*2 ;

or in a nested pattern: nodeb = ((0)*2 (1)*2)*2 ;
nodea = (0)*4 (1)*4 ;

Note that (1) a space must be between the repeat factor and the next
vector or vector pattern, and (2) infinite patterns may not be nested.

I A pattern defined in the Vector File may be overridden
with the FORCE or PATTERN command.

Table Format

The table format for input vectors begins with the keyword TABLE:,
followed by a list of node levels and a column of node values. For
example, inputs for a simple three-bit binary counter may be expressed
as follows (each entry represents one column in the table):

TABLE: nodea nodeb nodec ;

ek ek e O DO O
—m O D ke OO
D e D e D e D

Functional Simulator FS-13

in a group entry within a table, the column is interpreted according to
the base specification for that group. The following example shows a
vector table that contains individual nodes and a group represented
with hexadecimal numbers:

TABLE: nodel node2 group3 ;

0 1 5
0 0 6
0 0 7
I A table may be overridden with the FORCE or

PATTERN command.

Input vectors may also be specified with predefined vector sequences.
Refer to Predefined Input Vector Sequences in the section tabbed
FSIM Reference.

Command File Input

FS-14

Command File input is used only for running a simulation in batch
mode. This file contains the simulation instructions, and must have the
extension .CMD. The commands specified determine the actions of
the Functional Simulator in the same way as commands entered in
response to the prompts displayed in the interactive mode. Functional
Simulator commands are listed in alphabetical order and described in
detail in Simulation Commands.

A+PLUS User Guide

Simulator Outputs

The Functional Simulator may output a Log File ((LOG), Watch File
(.-TBL), Plot File ((WAYV), and Save File (.SAV). Each type of output
file is described below.

Log File

The optional command Log File (with the default extension .LOG)
records the commands executed by the Functional Simulator. The
Functional Simulator stops writing to the specified Log File when the
QUIT or LOG OFF command is entered. This file may be used later to
repeat the simulation session by renaming it (as a Command File) with
the extension .CMD.

Watch File

The optional Watch File (with the default extension .TBL) is a vector
table output file that provides a tabular description of the nodes
requested by the WATCH command. The vector table output
describes the state of the nodes in 1’s and 0’s, and may be printed at
any time during or after simulation. (Refer to the description of the
WATCH command in Command Reference.)

Plot File

The optional Plot File (with the default extension .WAYV) is a waveform
output file that contains a simple waveform description of individual
nodes requested with the PLOT command. These waveforms may be
printed at any time during or after simulation. (Refer to the description
of the PLOT command in Command Reference.)

Functional Simulator FS-15

Both the Watch and Plot files include a line of the following format:
Simulation Cover : n %

where n indicates the percentage of nodes in the design that have had
a transition from low to high or high to low during simulation. This
feature informs you of how well the design has been exercised during a
particular simulation run.

Save File

FS-16

The Save File (.SAV) is an optional file that saves the simulation
environment that exists when the SAVE command is entered. This file
allows you to return to a particular simulation state and thus avoid
repetition of simulation sessions. The simulation environment in the
Save File may be restored at any time with the RESTORE command.

A+PLUS User Guide

Sample Session — Interactive Mode

This sample session provides a step-by-step example of how to run a
functional simulation, using the beverage dispenser design described
in detail in Boolean Equation Entry in the A+PLUS User Guide. For
quick reference, the BEVDIS circuit is shown here again in Figure
FS-3. The Altera Design File for this sample is also provided on your

FSIM diskette under the name BEVDIS.ADF.

This sample session generally follows the three-phase format of the
simulation process described above and shown in Figure FS-2. Several
commands from each phase are worked into the sample to illustrate

their use.

To prepare for this sample session, copy the file BEVDIS.ADF and
run it through the Altera Design Processor to produce the JEDEC file
BEVDIS.JED. You may wish to create a directory named BEVDIS that
will contain the files necessary for simulation, then change to that

directory to perform simulation.

As you go through this sample simulation, refer also to Command
Reference in the FSIM Reference section for detailed descriptions of

all available commands.

Functional Simulator

FS-17

unony ajdwes s|aA3g "e-Sd4 a.nbiy

NI
- 4 00D
q404IS ¢
]
_ ION
L
dNI
R ANV <1 TINAdND
ION
] 1
€ANV IAIL_.
ION
<9
= S dO¥ANIOD
dnodoyda {
¢ANV dNI
' <] 14s3y
|
dNI
oIV &1 F19YNd

A+PLUS User Guide

FS-18

The sequence of steps required for interactive mode simulation is as

follows:

Step 1:

Step 2:

Step 3:

Step 4:

Manually draw the input waveforms for your design
(optional).

Enter the input vectors with a text editor and save the file
with the extension .VEC.

If you are in the APLUS Menu, press <F6> to invoke the
Functional Simulator (FSIM). (Do not specify a filename.)

You may also invoke the Functional Simulator directly
from DOS. Type at the system prompt:

FSIM <Enter>

Enter the commands as you are prompted by the
Functional Simulator.

You may enter the VIEW command to analyze your
design at any time during or after simulation. (Refer to the
section tabbed Virtual Logic Analyzer.)

Phase 1 — Setup Commands

In Phase 1, you set up the environment for the simulation. First, you
should make a manual drawing of the input waveforms you expect the
Functional Simulator to generate. Later, you can compare your drawing
with the computer-generated waveform output. Next, you create a
Vector File to set up the inputs for the simulation process.

Step 1 — Draw the Waveforms Manually:

Manually draw the design input waveforms for the beverage dispenser.
An example is shown in Figure FS-4.

Functional Simulator

FS-19

suuojaaep indino pue induj ubisag peajealsd Ajjenuepy “p-S4 a.nbiy

09 99 0s 974 oy 93 0¢ 94 0¢ ST 01 s 1
S S S e S o
I [—
] [L

:synduj

L] L
L I
[B [I

SADO0TO
JOLOdA

AD0TO
dOJANIOD
TINAdNO
L1AS9d

TIIVNT

dNododd

ANIA@INOd

d4041S

ssindinQ pajoadxy

A+PLUS User Guide

FS-20

Step 2 — Create and Save the Vector File:

With your text processor in non-document mode, create a Vector File
defining the set of input vectors. Save this Vector File with the name
BEVDIS.VEC. Remember that if you wish to include a node group in
your Vector File, the GROUP command must be entered before the
VECTOR command. You may enter Patterns or Tables (not both), and
only one table is permitted per file.

Pattern Format:

The pattern format begins with the keyword PATTERN:. This format is
convenient for grouping repetitious node values. Figure FS-5 shows
the vector file for the BEVDIS design. Comments are enclosed in
percent symbols (%); patterns are separated by spaces.

PATTERN:

%input logic pattern%

CLOCK = (001 1)*; % pattern repeats forever %

COINDROP = 0000111111009 11111100*7111

11100%61111110000111111(00)*6
11111100)*;

CUPFULL = @01 1)*O00*11D*O0*13111111
(00)*;

CONTROL = (10)*; % group consists of ENABLE and RESET %

Figure FS-5. Pattern Format Vector File for BEVDIS

Table Format:

The tabular format begins with the keyword TABLE:. If you wish to
simulate a large number of vector clocks, this format can become rather
long. Figure FS-6 shows a portion of the BEVDIS pattern converted
into tabular format. (Note: the remainder of this sample session uses
the Pattern format.)

Functional Simulator FS-21

TABLE:

CLOCK COINDROP CUPFULL RESET ENABLE ;

Figure FS-6. Table Format Vector File for BEVDIS

A+PLUS User Guide

FS-22

Step 3 — Invoke the Functional Simulator:

To begin interactive mode simulation, you must now invoke the
Functional Simulator.

While in the APLUS Menu, press <F6>. When you are prompted for a
file to simulate, press <Enter>.

After the introductory information has been displayed, you are
prompted for:

JEDEC File Name:
Type (without the extension):
BEVDIS <Enter>

The FSIM prompt symbol is displayed, with 0 indicating that you are at
cycle 0:

0>

I After you enter the SIM command, the 0 will change to
the number indicating the current cycle.

Step 4 — Enter the Commands:

Enter all the commands to be executed during simulation (this example
contains 13 commands). These commands determine the execution of
the Functional Simulator as it processes the .VEC file during the actual
device simulation run. The actual simulation will be performed only after
you enter the SIM command. Each command is executed with
<Enter>.

(1) Type:

0> LOG @bevdis <Enter>

Functional Simulator FS-23

FS-24

LOG tells the Functional Simulator to create a file containing all the

BEVDIS.LOG. Later, if you wish to repeat the same set of commands
in batch mode, you may rename BEVDIS.LOG as BEVDIS.CMD and
simply use the command EXEC.

(2) Type:

0> SYMB ???* <Enter>

The screen displays the list:

P11 P12 P13 P14
P15 P16 P17 P18
P19 CLOCK ENABLE RESET

COINDROP CUPFULL DROPCUP POURDRNK
STROBE

This command and the pattern matching feature display a list of all node
names containing three or more characters. (Node names of the format
P# are predefined node names for EPLD pins.)

(3) Type:

0> GROUP BINARY CONTROL = ENABLE RESET <Enter>
This command sets up a binary group (base 2) called CONTROL that
contains ENABLE and RESET. Groups used in the Vector File must
be entered with the GROUP command before the VECTOR
command.

(4) Type:

0> VEC @bevdis <Enter>

This command tells the Functional Simulator to use the file
BEVDIS.VEC for input vectors during BEVDIS simulation.

A+PLUS User Guide

(5) Type:

0> GROUP HEX INPUTS = CLOCK CUPFULL COINDROP
<Enter>

This command defines a hex group containing CLOCK, CUPFULL,
and COINDROP. Note that this group has been entered after the
VECTOR command; therefore, if a vector pattern was assigned to this
group in the Vector File, it will be ignored.

(6) Type:

0> GROUP <Enter>

The screen displays the following:

Group CONTROL in binary contains the following members:

ENABLE RESET

Group INPUTS in hexadecimal contains the following
members:

CLOCK CUPFULL COINDROP

The GROUP command displays the contents of all groups in this form.

(7) Type:
0> DESCRIBE CONTROL <Enter>
The screen displays the following:

Name Pin Macrocell Level
CONTROL - - X

The DESCRIBE command thus displays the level of the group labeled
CONTROL.

Functional Simulator FS-25

FS-26

(8) Type:

0> INIT CONTROL = 11 <Enter>

The INIT command forces the group to initialize at level 11 (binary).
Note that in BEVDIS.LOG the INIT command is recorded as a
FORCE command and the group is expanded to its individual
members. (Refer to Figure FS-9).

(9) Type:

0> DESCRIBE CONTROL <Enter>

The screen displays the following:

Name Pin Macrocell Level
CONTROL - - 11

The DESCRIBE command now displays the changed level of the
CONTROL group.

(10) Type:

0> CYCLE 4 <Enter>

This command defines one cycle as equal to four vector clocks and the
prompt will now increment every four vector clocks. (See Vector
Processing and the CYCLE Command in FSIM Reference.)

(11) Type:

0> PLOT CLOCK ENABLE RESET COINDROP CUPFULL
DROPCUP POURDRNK STROBE <Enter>

The PLOT command indicates which nodes should be included in the
default waveform output file, BEVDIS.WAYV.

A+PLUS User Guide

(12) Type:

0> WATCH DROPCUP.FBK POURDRNK.FBK @watch.out
<Enter>

The WATCH command indicates which nodes should be included in a
tabular output file. The filename WATCH.OUT is specified.

I Refer to Referencing Subnodes in the FSIM Reference
section for instructions on adding an identifier to an
internal node (i.e., subnode).

(13) Type:
0> PLOT OFF <Enter>

This command specifies that no waveform output will be generated
until a PLOT ON command turns the waveform output on.

You now have specified the commands needed to set up the
simulation environment. Next, you specify the simulation conditions.

Phase 2 — Control Commands

The BREAK command interrupts the simulation process so that one or
more commands may be executed at a specified breakpoint. BREAK
commands may be nested, but a nested BREAK command is only
executed and a breakpoint set if the conditions for the root breakpoint
have been met. When a list of breakpoint commands is entered, each
BREAK command, as well as each command within the BREAK
command, must be terminated with a semicolon (;).

(1) Type:
0> BREAK RANGE 5 DO PLOT ON; WATCH OFF; STATUS;

BREAK RANGE 10 DO PLOT OFF; WATCH ON; STATUS;
CONTINUE;; CONTINUE;; <Enter>

Functional Simulator FS-27

FS-28

This nested command sequence causes the Functional Simulator to
halt at cycle 5 and:

— start plotting a waveform output;
— stop generating tabular output;
— display the status of the simulation;
— set another breakpoint that will cause the simulator to halt at cycle
10 and:
— stop plotting the waveform output;
— start generating tabular output;
— display the status of the simulation;
— then continue the simulation without stopping;
— continue the simulation without stopping.

The screen will display the following:

[0] Range §

where [0] is the number automatically assigned to the set breakpoint
and Range 5 indicates the halt conditions.

(2) Type:

0> BREAK RANGE 0 TO 10 NODES POURDRNK = 1
CUPFULL = 1 <Enter>

The screen will display the following:

[1] Range 0 to 10 Nodes POURDRNK =1 ..

where [1] is the number automatically assigned to the set breakpoint
and Range 0 to 10 Nodes POURDRNK = 1 .. indicates the halt
conditions.

This command causes the Functional Simulator to stop simulation if

both POURDRNK and CUPFULL are high during the same cycle
between cycles 0 and 10.

A+PLUS User Guide

(3) Type:
0> BREAK <Enter>
The screen displays the state of the two breakpoints as follows:

[0] Range 5
[1] Range 0 to 10 Nodes POURDRNK =1 ..

Next, the actual simulation is performed.

Phase 3 — Execution Commands

During this phase, the actual simulation is performed and information
on the simulation status may be displayed.

(1) Type:

0> SIM 15 <Enter>

where 15 is the cycle to which the simulation should be performed.

The screen displays the following:

[1] hit at cycle = 4

indicating that the conditions set for breakpoint [1] have been met at
cycle 4. Therefore, the cycle number displayed before the prompt
symbol (>) is now 4.

(2) Type:

4> BREAK <Enter>

The screen displays the following:

[0] Range 5
[1] HIT Range 0 to 10 Nodes POURDRNK =1 ..

Functional Simulator FS-29

FS-30

The conditions for breakpoint [1] have been met.

(3) Type:

4> CLEAR 1 <Enter>

Breakpoint [1] is cleared.

(4) Type:

4> CONT <Enter>

Simulation will continue with the following display:

[0] hit at
Part in use

.
.

JEDEC file :

Vector file
Logfile
Logging
Plot file
Plotting
Watch file
Watching
Sim. cover
[1]

[1] hit at
Part in use
JEDEC file
Vector file
Logfile
Logging
Plot file
Plotting
Watch file
Watching
Sim. cover

se o0 oo o

.

cycle = §
EP310
bevdis.jed
bevdis.vec
bevdis.log
ON
bevdis.wav
ON
watch.out
OFF

81%
Range 10
cycle = 10
EP310
bevdis.jed
bevdis.vec
bevdis.log
ON
bevdis.wav
OFF
watch.out
ON

81%

Simulation finished

A+PLUS User Guide

This screen display shows that the conditions specified for breakpoint
[1] have been met at cycle 5 and the commands have been executed.
In addition, another breakpoint was set and hit, and its commands have
been executed.

(5) Type:
15> QUIT <Enter>

You have now completed the sample session for interactive mode
simulation. The figures on the following pages show:

Your input to the keyboard (Figure FS-7)

The output to the screen (Figure FS-8)

The Log File BEVDIS.LOG (Figure FS-9)
The Plot File BEVDIS.WAYV (Figure FS-10)
The Watch File WATCH.OUT (Figure FS-11)

LOG @bevdis <Enter>

SYMB 777* <Enter>

GROUP BINARY CONTROL = ENABLE RESET <Enter>

VEC @bevdis <Enter>

GROUP HEX INPUTS = CLOCK CUPFULL COINDROP <Enter>

GROUP <Enter>

DESCRIBE CONTROL <Enter>

INIT CONTROL = 11 <Enter>

DESCRIBE CONTROL <Enter>

CYCLE 4 <Enter>

PLOT CLOCK ENABLE RESET COINDROP CUPFULL DROPCUP POURDRNK
STROBE <Enter>

WATCH DROPCUP.FBK POURDRNK .FBK @watch.out <Enter>

PLOT OFF <Enter>

BREAK RANGE 5 DO PLOT ON; WATCH OFF; STATUS; BREAK RANGE 10 DO
PLOT OFF; WATCH ON; STATUS; CONTINUE;;,CONTINUE; <Enter>

BREAK RANGE 0 TO 10 NODES POURDRNK=1 CUPFULL=1 <Enter>

BREAK <Enter>

SIM 15 <Enter>

CLEAR 1 <Enter>

CONT <Enter>

QUIT <Enter>

Figure FS-7. Input to the Keyboard

Functional Simulator FS-31

<Functional Simulator version information appears here>

P11 .P12 .P13 .P14

.P15 .P16 P17 P18

.P19 CLOCK ENABLE RESET
COINDROP CUPFULL DROPCUP POURDRNK
STROBE

Group CONTROL in binary contains the following members:
ENABLE RESET

Group INPUTS in hexadecimal contains the following members:
CLOCK - CUPFULL COINDROP

Name Pin Macrocell Level
CONTROL - - X
Name Pin Macrocell Level
CONTROL - - 11
[0] Range 5

[1] Range 0 to 10 Nodes POURDRNK = 1..
[0] Range 5

[1] Range 0 to 10 Nodes POURDRNK = 1..
[1] hit at cycle = 4

[0] Range 5

[1] HIT Range 0 to 10 Nodes POURDRNK = 1..
[1] hit at cycle = 5

Part in use EP310

JEDEC file bevdis.jed

Vector file bevdis.vec

Logfile bevdis.log

Logging ON

Plot file bevdis.wav

Plotting ON

Watch file watch.out

Watching OFF

Sim. cover 81%

[1] Range 10

[1] hit at cycle = 10

Part in use EP310

JEDEC file bevdis.jed

Vector file bevdis.vec

Logfile bevdis.log

Logging ON

Plot file bevdis.wav

Plotting OFF

Watch file watch.out

Watching ON

Sim. cover 81%

FS-32

Figure FS-8. Screen Output

A+PLUS User Guide

SYMBOLS .P11 .P12 .P13 .P14 .P15 .P16 .P17 .P18 .P19 CLOCK ENABLE
RESET COINDROP CUPFULL DROPCUP POURDRNK STROBE ;
GROUP BINARY CONTROL = ENABLE RESET ;
VECTOR @bevdis.vec ;
GROUP HEXADECIMAL INPUTS = CLOCK CUPFULL COINDROP ;
GROUP ;
DESCRIBE CONTROL ;
FORCE RESET = 1 ENABLE = 1;
DESCRIBE CONTROL ;
CYCLE 4 ;
PLOT CLOCK ENABLE RESET COINDROP CUPFULL DROPCUP POURDRNK
STROBE ;
WATCH DROPCUP FBK POURDRNK.FBK @watch.out ;
PLOT OFF;
BREAK
RANGE 5
DO
PLOTON ;
WATCH OFF ;
STATUS ;
BREAK
RANGE 10
DO
PLOT OFF;
WATCHON ;
STATUS ;
CONTINUE ;

CONTINUE ;

BREAK
RANGE 0 TO 10
NODES POURDRNK=1 CUPFULL=1 ;
BREAK ;
SIM 15 ;
BREAK ;
CLEAR 1 ;
CONTINUE ;
QUIT ;

Figure FS-9. Output to the Log File BEVDIS.LOG

Functional Simulator FS-33

e~ — — - — ——— — — ————— —

Output to the Plot File BEVDIS.WAV

Figure FS-10.

A+PLUS User Guide

FS-34

- Nollol.-Nel--Nv/|
NZRPXOxX®CO™

C
Y . .
C F F
L B B
E K K
0 0
0 0
0 0
1 0 0
0 0
0 0
1 0
2 1 0
1 0
1 0
0 1
3 0 1
0 1
0 1
0 1
4 0 1
0 1
0 1
0 0
5 0 0
0
0 1
0 0

Figure FS-11. Output to Watch File WATCH.OQUT
(Part 1 of 2)

Functional Simulator FS-35

11

12

13

14

C OO0 0 OO OO OODOO O OO
OO0 00000 OOOOOOC OO

15
Simulation cover: 81%

Figure FS-11. Output to Watch File WATCH.OUT
(Part 2 of 2)

FS-36 A+PLUS User Guide

Sample Session — Batch Mode

Like the interactive mode sample session, this sample session uses
the BEVDIS circuit shown in Figure FS-3. Before beginning batch
mode simulation, you should copy BEVDIS.ADF from your FSIM
diskette and run it through the Altera Design Processor to Processor to
produce the JEDEC File BEVDIS.JED. You may wish to create a
directory named BEVDIS that will contain the files necessary for
simulation, then change to that directory to perform simulation.

As you go through this sample simulation, refer also to Command
Reference in FSIM Reference for detailed descriptions of all available
commands.

The senuence of
1Ne ge nce o

MU

Q
BEVDIS design are

Step 1 — Draw the Waveforms:

Manually draw the input waveforms for the beverage dispenser
(optional). Refer to the example in Figure FS-4.

Step 2 — Create and Save the Vector File:

Enter the input vectors with a text processor in non-document mode as
described in Interactive Mode (Step 2) and save the file as
BEVDIS.VEC.

Step 3 — Create and Save the Command File:

Type the Command File input with a text processor, as shown in Figure
FS-12, and save it as BEVDIS.CMD (or copy BEVDIS.LOG from the
interactive mode sample session to BEVDIS.CMD).

Functional Simulator FS-37

FS-38

LOG @bevdis ;

SYMB 777* ;

GROUP BINARY CONTROL = ENABLE RESET ;

VEC @bevdis ;

GROUP HEX INPUTS = CLOCK CUPFULL COINDROP ;
GROUP;

DESCRIBE CONTROL ;

INIT CONTROL = 11;

DESCRIBE CONTROL ;

CYCLE 4 ;

PLOT CLOCK ENABLE RESET COINDROP CUPFULL DROPCUP POURDRNK
STROBE ;

WATCH DROPCUP.FBK POURDRNK.FBK @watch.out ;

PLOT OFF;

BREAK RANGE 5 DO PLOT ON; WATCH OFF; STATUS; BREAK RANGE 10 DO
PLOT OFF; WATCH ON; STATUS;
CONTINUE;; CONTINUE; ;

BREAK RANGE 0 TO 10 NODES POURDRNK=1 CUPFULL-=1 ;

BREAK ;

SIM 15 ;

BREAK ;

CLEAR 1 ;

CONTINUE ;

QUIT ;

Figure FS-12. Command File BEVDIS.CMD for
Batch Mode

Step 4 — Run the Functional Simulator in Batch Mode:

To begin batch mode simulation, you must now invoke the Functional
Simulator.

While in the APLUS Menu, press <F6>. You may also invoke the
Functional Simulator directly from DOS. Type at the system prompt:

FSIM <Enter>

When you are prompted for a file to simulate, press <Enters.

A+PLUS User Guide

After the introductory information has been displayed, you are
prompted for:

JEDEC File Name:

Type (without the extension):

BEVDIS <Enter>

The Functional Simulator will look for the three input files (i.e.,
BEVDIS.JED, BEVDIS.VEC, and BEVDIS.CMD) and process
them. After the simuiation has been completed, the message:
Simulation finished

is displayed.

This concludes the sample session for batch mode simulation.

Functional Simulator FS-39

FSIM Reference

This section explains some advanced features/concepts used with the
Functional Simulator and provides detailed descriptions of all
commands. (Refer to Appendix C in the A+PLUS Reference
Guide for a description of the BNF syntax specifications used.)

You will find information on:

Vector processing and the CYCLE command

Using predefined input vector sequences

Propagation of undefined node levels

Simulating designs with bidirectional pins

Simulating designs with buses

Simulating designs with externally connected clock pins
Referencing predefined node names for pins, macrocells, and
buses

Referencing subnodes of I/O primitives

Reserved words not available for use with FSIM

FSIM command format

Descriptions of syntax and usage of each command

Functional Simulator FS-41

Vector Processing and the CYCLE Command

FS-42

The sequence of events for processing a vector in a Vector File is
given below. This sequence is executed at each vector clock, i.e., in
the unit of time during which a single vector is processed.

(@)

s

(b)

©

(e)

(f)
@
(h)

A vector is loaded and input pin values are updated.

FORCE commands always override vector inputs.

If a clock pin goes high as a result of (a), the synchronous register
outputs are updated. If the part specified in the JEDEC File is an
EP310, the synchronous Preset product term is evaluated and
may also cause the register output to be updated.

If the level of a pin-driven input (e.g., Clock, Read Strobe, or
Write Strobe) to a BUSTER (EPB1400) latch or BUSX changes
as a result of (a), the latch or transceiver is reevaluated.

If an asynchronous clock product term goes high as a result of (a),
the register output is updated.

If a Clear (or Output Enable) product term goes high as the result
of (a), the register output (or pin level) is updated.

Other product terms in the array are now evaluated.
BUSTER latches and bus transceivers are reevaluated.
If any feedbacks have changed during this process, steps (d)

through (g) are repeated until the feedback levels are stable or
the convergence limit is reached.

This order of processing may cause unexpected results. Consider the
following example:

You have a D flipflop:

CLK —3

A+PLUS User Guide

This flipflop is fed a Vector File containing the following:

CLK
IN

01
01

010 ;
000 ;

The resulting waveform is as follows:

C
Y
C C o)
L L I U
E K N T
1
2
3
4
5

The IN was not passed through to OUT at vector clock 2 because the
synchronous register clock was processed before the input. It is
possible to avoid this situation by manually expanding the length of all
signals and shifting signals relative to each other.

The expanded Vector File would appear as follows:

CLK 0 0 1.1 0 0 1 1 0 o;
IN 0 1. 1.0 0 0 0 0 0 o;

The waveform output is “stretched out,” as follows:

Functional Simulator FS-43

mra<0

—_0 00 AW b WN -

(=]

The relative length of all signals is maintained; yet the circuit now
simulates as expected.

The CYCLE command is provided to simplify the use of the Functional
Simulator and interpretation of the output. This command instructs the
Functional Simulator to display and use all values relating to vector
clocks in terms of a user-specified cycle. This cycle is an integral
number of vector clocks.

If you specify a cycle of 4 with the command CYCLE 4, the waveform
output of the example would appear as follows:

FS-44 A+PLUS User Guide

o<

The labeling of the waveform now corresponds to the cycles of CLK.

5> The CYCLE command has no effect on the simulation
process or on how the Vector File is read. It is simply a
means of simplifying the interpretation of the output
waveforms.

When the cycle length is changed, only the following areas are

affected:

. Input cycle values for SIM and BREAK commands
. Output cycle value of the prompt

= Output labeling for Plot and Watch files

= Predefined vector input sequences (see below)

Functional Simulator FS-45

Predefined Input Vector Sequences

FS-46

Four predefined vector sequences, which enable you to define
vectors for individual groups, are available. These sequences are:

Binary Counting (COUNT) Sequence
Rotating Bit (ROTATE) Sequence
Gray Code (GRAY) Sequence

Glitch Generator (GLITCH) Sequence

Binary Counting Sequence

If n members are in the group, the COUNT sequence begins with 0
and counts modulo 20. For a group with three members, the sequence
counts from 0 to 7 and then begins again with 0:

000 001 010 011 100 101 110 111 000 001 ...

Example:

grpl = COUNT ;

Rotating Bit Sequence

In the ROTATE sequence, a bit with level 1 is rotated left through each
bit position within the group. Startup is with the right-most bit position
set, and the sequence repeats every n cycles for an n-member group.
Therefore, the rotating bit pattern for a three-member group is:

001 010 100 001 010 ...

Example:

grpl = ROTATE ;

A+PLUS User Guide

Gray Code Sequence

The GRAY sequence changes one bit at a time. In a group with n
members (bits), the sequence has 2m unique elements in the
sequence. These are identical to the elements of the COUNT
sequence, but in a different order:

000 001 011 010 110 111 101 100 000 001 011 ...

Example:

grpl = GRAY ;

Glitch Generator Sequence

The GLITCH sequence changes the maximum number of bits in a
pattern from one cycle to the next. It is like the GRAY sequence, but
the bits are inverted in every other pattern of the sequence:

000 110 011 101 110 000 101 011 000 110 011 ...

Example:

grpl = GLITCH ;
i S The cycle value affects the rate at which predefined input

vector sequences change. For example, if CYCLE is 4,

the COUNT sequence increases every four vector
clocks.

Functional Simulator FS-47

Propagation of Undefined Node Levels

If your design contains nodes with undefined logic levels, they will
propagate these according to the rules given below.

Logic Functions

If at all possible, defined levels are maintained. For example, if a logic
low (0) is ANDed with an undefined level, the result is a logic low. The
following levels are propagated for the AND, OR, and NOT logic
functions (0 = logic low, 1 = logic high, X = undefined):

AND_Function OR Function

0 AND X = 0 0 OR X = X
1 AND X = X 1 OR X =1
X AND X = X X OR X = X
NOT Function

NOT X = X

Flipflops and Latches

(1)

If the output level of a flipflop or latch would remain
constant regardless of an undefined input level, this
output level is maintained. For example, if an undefined
asynchronous clear level is applied to a flipflop with an
output at logic low, the output would be maintained at logic
low (0). Or, if an undefined clock is applied to a D flipflop
with the D node at logic high (1) and the output Q node at
logic high, a logic high is maintained on the Q node.

If the output level of a flipflop or latch would change
depending on an undefined input level, the output node is
set to undefined (X) level.

Output Enables

If a tri-state buffer has an undefined Output Enable input, the
output of that buffer will be undefined (X).

FS-48

A+PLUS User Guide

Bidirectional Pins

If you wish to simulate a design that uses bidirectional 1/0 pins, three
extra steps are required to set up the environment for simulation and
view the results for the pins:

1.

0> PAT OEPIN =
0> PATIOPIN =Z Z Z Z 0 1 0 1 Z Z Z

Set Output Enable (OE) to 0 (low) one vector clock before the
pin is used for input and to 1 (high) one vector clock before it is
used for output. This allows the OE signal to propagate through
to the tri-state buffer before input or output begins.

When specifying vector patterns, use Z (high impedance) when
the pin is driving out.

Example: For a design with a bidirectional pin IOPIN and
Output Enable input pin OEPIN, you enter:

111 0 0 0 0 1 1 1 1

% Z’s when pin is driving out %
When you plot or print the nodes (with PLOT or WATCH),
append the extension .INP to the bidirectional pin name in order
to view the input values. (If the .INP extension is not used, Z’s
will be plotted instead.)
For the example above, the command
0> WATCH OEPIN IOPIN IOPIN.INP

yields the following output (note that IOPIN values for cycles 1-4
and 9-11 are defined by output logic not described in this
example):

Functional Simulator FS-49

zZz=9Qo"™

C o I

Y E (6] .
C P P I
L I I N
E N N P
1 1 0 Z
2 1 1 Z
3 1 0 Z
4 0 1 Z
5 0 Z 0
6 0 Z 1
7 0 Z 0
8 1 z 1
9 1 0 Z
10 1 1 Z
11 1 0 Z

Bus Port Pins

FS-50

If you wish to simulate bus operation in a BUSTER (EPB1400) design,
two additional steps are required to set up the environment for
simulation and view the results for the bus port pins, except when the
control for the bus transceiver (BUSX) is supplied only by the
dedicated Read Strobe pin (/CRS). This procedure applies to any
other combination of up to three of the following inputs: Read Strobe
(/RS), Read Enable (RE), and Output Enable (OE).

1. Set the signals that control BUSX so that the bus port is driving
in one vector clock before the bus port pin is used for input, i.e.,
RS = 0, OE= 1, RE = 0; and so that it is driving out one
vector clock before the bus port pin is used for output, i.e.,
RS =0,0E=1, RE = 1.

2. When specifying vector patterns, use Z (high impedance) when
the bus port is driving out.

A+PLUS User Guide

Externally Connected Clock Pins

For some designs, the Utilization Report (.RPT file) contains a
message to connect clock pins externally. To simulate your design, you
must use predefined node names to reference each of the clock pins
specified in the Utilization Report. In addition, you must define the
same input vectors for each clock pin.

For example, if your EP600 design requires that you externally connect
pins 1 and 13, your Vector File input for simulation must contain lines of
the following format:

PATTERN:
P1 = (0 1)*4 ;
P13 = (0 1)*4

Referencing Predefined Node Names

To allow complete access to all nodes within an EPLD, the Functional
Simulator automatically creates node names for each element of
BUSTER (EPB1400) buses, pins (except VCC and GND) and
macrocells:

" Each element of a BUSTER bus may be referenced as .B0
through .B7, where .B0 and .B7 are the least and most
significant bits, respectively.

- Pins may be referenced as .P#, where # represents a 1- or 2-
digit number. (EP1800G pin numbers also include a letter, e.g.,
PA10.)

L] Macrocells may be referenced with .M#, where # represents a
1- or 2-digit number.

These predefined names may be used in the same manner as user-
defined node names and displayed with the SYMBOLS command.

Functional Simulator FS-51

Referencing Subnodes

FS-52

Individual pin nodes may be referenced by their pin names, whereas
subnodes (i.e., internal nodes) of /O primitives (namely, Output Enable
(OE), Clear (C), Preset (P), Clock (Clk), Feedback (Fbk), and Input
Vector (INP)) are referenced by appending an identifier to the pin
name. For example, the following illustration shows a generic
representation of an 1/O primitive where the output pin name
associated with the primitive is OUTPIN:

OE

| |
C P
D OUTPIN
—p Clk

INP

Fbk

Subnodes of the /O primitive are referenced with the following
notation (both uppercase and lowercase are allowed and are
significant):

OE OUTPIN.OE
Clear OUTPIN.C
Preset OUTPIN.P
Clock OUTPIN.CLK
Feedback OUTPIN.FBK
D input OUTPIN.D

T input OUTPIN.T

Input Vector OUTPIN.INP

I The Functional Simulator will ignore any other types of
node names, including user-assigned node names, that
contain a period.

When a design passes through the Altera Design Processor, all JK and
SR flipflops are emulated by D and T flipflops. Consequently, you
cannot reference JK or SR flipflops directly, and J, K, S, and R
subnode extensions are not allowed. (For description of JK and SR
flipflop configurations, see Altera Applications Brief AB28.)

A+PLUS User Guide

Reserved Words

The following list of words may not be used for node or group names.

BEGIN

BIN
BINARY
BREAK
CLEAR
CONT
CONTINUE
COUNT
CYCLE
DEC
DECIMAL
DESC
DESCRIBE
DISP
DISPLAY
DO

DOS
ECHO
EXEC
EXECUTE
FORCE
GRAY
GLITCH
GROUP
HELP

HEX
HEXADECIMAL
INIT
INITIALIZE
LOG
LOGFILE
NO

NODES
oCT
OCTAL
OFF

ON

PAT
PATTERN

Functional Simulator

PLOT
QUIT

RA
RANGE
ROTATE
REST
RESTORE
SAVE

SIM
SIMULATE
SYMB
SYMBOLS
STATUS
TO

VEC
VECTOR
VIEW
WATCH

FS-53

Command Reference

This section lists all available simulation commands in alphabetical
order. Each command description is presented on a separate page and
includes detailed information as outlined here:

Format:

Purpose:

Description:

Example:

Note:

Iz

FS-54

Gives the name and accepted abbreviation of the
command. (Refer to Command Format below.) The
format shows each command terminated by a
semicolon, i.e., as entered in batch mode simulation. In
interactive mode, however, the semicolon is optional.

Explains the intended function of the command.
Describes the function of the command.
Shows an example of how the command is used.

Gives additional information if needed.

1. Commands in a breakpoint command list, i.e.,
beginning with the BREAK command, must be
terminated with a semicolon in both interactive and
batch modes.

2. The at-symbol (@) indicates an (optional)
pathname followed by a filename.

A+PLUS User Guide

Command Format
The general format for simulation commands is as follows:
command <argument list> ;

where <argument list> consists of one or more of the following:

= a node list = apathname

L] a node value list = areserved word

= a cycle value ®= adecimal number(s)
= a command list

Node List

A node list consists of node and group names separated by white
space. Example:

nodel node2 node3 noded4 ...noden

The Functional Simulator supports pattern matching to simplify entry of
node lists. Examples:

E* matches all node names that start with E, regardless of the
number of characters in the name (8 is the maximum permitted).

E?E matches all node names that are 3 letters long, start with E, and
end with E.

*E matches all node names that end with E.

E?? matches all node names that are 3 letters long and start with E.

Node Value List

A node value list contains a node or group and the corresponding
value for that node or group. Example:

nodel = valuel node2 = value2 node3 = value3

Functional Simulator FS-55

FS-56

Cycle Value

The cycle value specifies the timing of the execution of a command
with respect to the current cycle. The cycle value argument may be
used with the SIM and BREAK commands. Example:

123 (absolute value)
+22 (relative value)

The relative value, indicated by the + symbol, is relative to the current

cycle value. (Both examples are equivalent if the current cycle is 101.)
Refer also to Phase 3 of The Simulation Process.

Command List
A command list is a set of commands, each of which is terminated by a
semicolon. The BREAK command is the only command that may

contain a nested list of commands. Example:

BREAK RANGE +22 DO FORCE NODE1l = 1; STATUS;
PLOT ON; CONTINUE ;;

Commands in a list are separated by semicolons (;). The BREAK

command list may not contain the SIM, PATTERN, or QUIT
command.

Iz In interactive mode, commands are executed by
pressing <Enter>, i.e., they may not span lines; in batch
mode, all commands are terminated with a semicolon (;).

Pathname

The pathname consists of an at-symbol (@), followed by a pathname
(optional) and filename. Example:

@\FSIM\DOC\BEVDIS.CMD

Table FS-1 lists the commands according to their general function.

A+PLUS User Guide

Table FS-1. Simulation Commands

FUNCTION

COMMAND

Node commands

Set signals to specified logic

levels.

Information commands
Provide data about commands,

nodes, and groups.

Simulation
control commands

Control execution of the

simulation.

Input commands
Specify input to the
simulator.

Output commands

Specify the output format

and display.

FORCE
INITIALIZE (INIT)

DESCRIBE (DESC)
DOS

GROUP

HELP

STATUS
SYMBOLS (SYMB)

BREAK

CLEAR
CONTINUE (CONT)
ECHO

QUIT

SIMULATE (SIM)

BEGIN

EXECUTE (EXEC)
PATTERN (PAT)
RESTORE (REST)
SAVE

VECTOR (VEC)

CYCLE
DISPLAY (DISP)
LOGFILE (LOG)
PATTERN (PAT)
PLOT

VIEW

WATCH

Functional Simulator

FS-57

BEGIN

FS-58

Format:

Purpose:

Description:

Example:

'BEGIN' ;

Resets the Functional Simulator.

Resets the Functional Simulator to its initial state. The
current design and simulation environment are lost. All
breakpoints and vectors are cleared; all groups are
removed; and the current cycle is set to 0.

BEGIN ;

A+PLUS User Guide

BREAK

Format:

Purpose:

Description:

Functional Simulator

'BREAK"' [<breakpoint id> | ['[RANGE'
<cycle value> ['TO' <cycle value>]] ['NODES'
<node value list>] ['DO' <command list>]] ;

where:

<breakpoint id> is a decimal number identifying a
breakpoint.

RANGE <cycle value>s TO <cycle value>
identifies a range of cycles that cause the Functional
Simulator to stop when any node value list conditions
are met.

NODES <node value list> identifies the values for
the nodes that cause the Functional Simulator to stop
when any cycle range conditions are met.

DO <command list> identifies the list of commands
to be executed when the Functional Simulator stops
when the breakpoint conditions have been met. Each
command in the list must be terminated with a
semicolon (in interactive or batch mode). For example,
node logic levels may be changed at a particular
breakpoint by using the VEC or FORCE command in
this command list.

Interrupts a simulation at the specified cycle and/or
node values. During the break, you may execute a list
of commands or display breakpoint status. This
command is optional.

When a breakpoint is encountered during the
simulation, the Functional Simulator stops and the
command list is executed. The command list may
contain any command, including BREAK, except
SIM, PATTERN, or QUIT. If the BREAK command is
followed only by a breakpoint number, the state of the
specified breakpoint is displayed; if it is used without

FS-59

FS-60

Examples:

arguments, the BREAK command displays the state
of all breakpoints.

BREAK ; (displays all breakpoints)

BREAK 22 ; (displays breakpoint 22)

BREAK RANGE +10 TO +30 NODES CLOCK =
1 OUTPUT1 = 0 DO DESCRIBE OUTPUT?2;
STATUS; CONTINUE ; ;

A+PLUS User Guide

CLEAR

Format:

Purpose:

Description:

Examples:

Functional Simulator

'CLEAR' [<breakpoint id>] ;

Clears the specified breakpoint. If no breakpoint
number is specified, all breakpoints are cleared. This
command is optional.

A breakpoint must be set before it can be cleared.

CLEAR ; (clears all breakpoints)
CLEAR 20 ; (clears breakpoint 20)

FS-61

CONTINUE (CONT)

Format: 'CONT' ;

Purpose: Resumes simulation after a breakpoint has been
encountered and the conditions specified in the
BREAK command have been met. This command is
optional.

Description: This command is valid only when the current cycle is
less than the cycle specified in the most recent SIM
command or until another breakpoint is encountered.

Example: CONTINUE ;

FS-62 A+PLUS User Guide

CYCLE

Format: 'CYCLE' [<decimal number>];
Purpose: Specifies the cycle value. This command is optional.

Description: This command allows you to specify the cycle length in
vector clocks. This cycle length is then used for input
and output references to time. The default cycle
length is one vector clock. Refer also to Vector
Processing and the CYCLE Command.

The cycle value affects the rate at which predefined
input vector sequences change. For example, if
CYCLE is 4, the COUNT sequence increases every
four vector clocks.

Examples: CYCLE ; (increments the cycle number at every
vector clock)

CYCLE 2 ; (increments the cycle number every
second vector clock)

Functional Simulator FS-63

DESCRIBE (DESC)

FS-64

Format:

Purpose:

Description:

Examples:

Note:

'DESC' <node list> ;

Provides information about nodes and groups
specified in the node list. This command is optional.

This command provides information about specified
nodes or groups. Information about nodes includes
the current level and associated pin and macrocell
numbers. DESC has no default node list: when the
node list is empty, nothing is displayed when the
command is invoked. This command has no effect on
the state of the simulation.

DESC DROPCUP COINDROP ;
DESC P? ;

Pattern matching with the wildcard characters ? and *
may be used with this command. For example, if you
enter DESC E*, all nodes whose name starts with E
are described, regardless of the number of characters
in the name.

A+PLUS User Guide

DISPLAY (DISP)

Format:
Purpose:

Description:

Examples:

Note:

Functional Simulator

'DISP' 'LOG' | '"PLOT' | '"WATCH' | 'VECTOR' |
@<pathname> ;

Displays a Log File, Plot File, Watch File, Vector File, or
any ASCI! file. This command is optional.

This command will display output files only for the
currently simulated design. If @<pathname> is
specified, it will display any ASCII file. (Use the
STATUS command to determine whether the PLOT,
WATCH, and LOG commands are turned on or off.)

DISP LOG ; (displays the current Log File)
DISP @bevdis.adf ; (displays bevdis.adf)

DISP can only display a Log, Plot, or Watch File after
the LOG ON, PLOT ON, or WATCH ON
command has been used to create the file. Similarly, a
Vector File can only be displayed after the VEC
command has been used to specify the input Vector
File to be used for simulation.

FS-65

DOS

FS-66

Format:

Purpose:

Description:

Examples:

Note:

'DOS' <DOS command> ;
Executes a single DOS command.

Temporarily interrupts the Functional Simulator to
enable you to execute any DOS command. You are
immediately returned to the Functional Simulator after
the command is completed.

DOS dir *.JED ;
DOS edit <filename> ;

To avoid memory allocation problems, do not use this

command to execute “Terminate and Stay Resident”
programs, e.g., DOS PRINT, GRAPHICS, SIDEKICK.

A+PLUS User Guide

ECHO

Format:

Purpose:

Description:

Examples:

Functional Simulator

'ECHQ' <text> ;

Writes a text string to the terminal.

This command is most useful while you are executing a
Command File (.CMD) in batch mode. It enables you
to display messages to the terminal as the file
executes.

ECHO display logfile ;
ECHO Hello, how are you? ;

FS-67

EXECUTE (EXEC)

FS-68

Format:

Purpose:

Description:

Example:

'EXECUTE' [@<pathname>] ;

Specifies a Command File for immediate execution.
The default is <JEDEC filename>.CMD. This
command is optional.

EXECUTE informs the Functional Simulator to take
command input from the Command File specified with
@<pathnames. If this file contains a QUIT command,
the Functional Simulator reads the file up to the QUIT
command, closes it, and then returns to take command
input from the preceding file or the keyboard. (Any
number of nesting levels is allowed.) If the file does not
contain a QUIT command, the Functional Simulator
reads the entire file and then treats the End-of-File
(EOF) as an implicit QUIT command.

EXEC @INIT.CMD ;

A+PLUS User Guide

FORCE

Format:

Purpose:

Description:

Examples:

Notes:

Functional Simulator

'FORCE' <node value list> ;

Forces a node, nodes, or a group to a specified value
regardless of the vector input at the current cycle. This
command is optional.

This command forces nodes or groups in the
accompanying node value list to assume the level
specified in the list. This command executes before
the next vector is processed and may be used at any
cycle.

FORCE nodea = 1 grpl = 55 ;
(forces nodea high and grpl to level 55 at the
next vector clock)

FORCE RESET =1 ;
(forces RESET high at the next vector clock)

1. The FORCE command sets a node to a user-
specified level, regardless of its current level. This
command is useful if you want to place specific nodes
into a certain state to observe the results of
subsequent simulation steps.

2. The FORCE command is often used within a
breakpoint command list. For example:

BREAK NODES nodeA = 0 DO FORCE RESET

= 1

causes FSIM to force RESET high when node nodeA
is low.

FS-69

GROUP

FS-70

Format:

Purpose:

Description:

Notes:

Examples:

'GROUP' [[<base>] <group name> ['=' <node
list>]] ;

Identifies the members of a <node list> as one group
so that they may be referenced, processed, and
displayed as <group name>. This command is
optional.

The <base> for a group name may be binary (BIN —the
default), hexadecimal (HEX), decimal (DEC), or octal
(OCT). When used without arguments, the GROUP
command displays the members of all groups. When
used with a group name, this command displays the
members of the group.

1. The first member of the node list is the most
significant bit of the group value, the last member is the
least significant.

2. Node groups cannot be plotted; you may only
plot the individual members of the group (i.e., use
individual node names in the PLOT command node
list.)

3. You may group the individual nodes of a
BUSTER (EPB1400) internal bus by using the
predefined node names .B0 through .B7.

GROUP HEX OUTPUT = Q* ;
(puts all node names beginning with Q into the
hexadecimal OUTPUT group)
GROUP INPUT ;
(displays the members of the INPUT group)
GROUP ;
(displays the members of all groups)

A+PLUS User Guide

HELP

Format:

Purpose:

Description:

Example:

Functional Simulator

'HELP' [<command name>] ;

Provides helpful information about a specific
command. When used without a specific command
name, it displays a list of all available commands. This
command is optional.

HELP prints a summary of information on each
command in the command list. The information is
automatically paged if necessary. At the --More--
prompt, press q to quit help or press any other key to
read the next page. HELP has no effect on the status
of the simulation.

HELP BREAK ; (displays help info about the
BREAK command)

FS-71

INITIALIZE (INIT)

FS-72

Format:

Purpose:

Description:

Examples:

Notes:

'INIT' <node value list> ;

Sets nodes or groups to the given value before
simulation is started, i.e., at cycle 0. This command is
optional.

The INIT command forces nodes or groups in the
accompanying node value list to assume the level
specified in the list. This command executes before
the next cycle is processed.

INIT nodea = 1 grpl = 55 ;

(initializes nodea high and grpl at level 55)
INIT RESET =1 ;

(initializes RESET high)

1. The INIT and FORCE commands set a node to
a user-specified level, regardless of its current level.
These commands are useful if you want to place
specific nodes into a certain state to observe the
results of subsequent simulation steps.

2. The INIT command may be used only at cycle 0.
FORCE may be used at any cycle.

A+PLUS User Guide

LOGFILE (LOG)

Format:

Purpose:

Description:

Examples:

Note:

Functional Simulator

'LOG' 'ON' | 'OFF' | [@<pathname>] ;

Instructs the Functional Simulator to start or stop
logging simulation commands to the specified or
default Log File. This command is optional.

This command turns logging on or off. The default Log
File is <JEDEC filename>.LOG; a different Log File
may be specified with @<pathname>.

LOG OFF ; (turns logging off)
LOG ON ; (turns logging on)
LOG ; (turns logging on with output sent to

<JEDEC filename>. LOG)
LOG @sim.log; (turns logging on with output
sent to sim.log)

Any existing Log File at the default or specified
<pathname> will be overwritten.

FS-73

PATTERN (PAT)

FS-74

Format:

Purpose:

Description:

Examples:

Note:

'PATTERN' [<node name> = <vector pattern>] ;

Enters and updates vector patterns interactively and
displays the current set of vector patterns on the
screen. This command is optional.

<node name> iS a group name or a node name that
may include a subnode extension. <vector pattern>
is a vector pattern with the same syntax as a Vector
File. If the PATTERN command is used with <node
name> and <vector patterns, the <vector pattern>
is assigned to the node specified by <node name>
and any existing pattern will be overridden. Therefore,
the PATTERN command may be used after a
VECTOR command to update and/or extend the
vector patterns in a Vector File.

When used without an argument, the PATTERN
command displays the current list of vector patterns. In
this display, the first vector in the pattern (highlighted)
that is associated with a node will be applied to the
node at the next vector clock.

PATTERN CLOCK = (0011) * ;

(defines a vector for the node CLOCK)
PATTERN INPUT = ((01) * §5) * 8 ;

(defines a vector for the group INPUTS)
PAT ; (displays the current set of vector patterns)

Input vectors may also be specified with predefined

vector sequences. Refer to Predefined Input Vector
Sequences.

A+PLUS User Guide

PLOT

Format:

Purpose:

Description:

Functional Simulator

'PLOT' 'ON' | 'OFF’ | <node list>
[@<pathname>] ;

Turns the plotting function on or off. PLOT command
output consists of a printable ASCII file containing a
waveform representation of the node levels in the
node list. The default Plot File is <JEDEC
filename>.WAYV; a different Plot File may be
specified with @<pathname>. This command is
optional.

PLOT output consists of characters that describe a
waveform for each node in the <node list>. Groups
may not be used in the <node list>; instead, you
must plot the individual members of the group. The
output runs horizontally across the paper, so that the
waveforms can continue over multiple pages. The
characters used to display the level of the nodes in the
Plot File are as follows:

LH
High level |
Low level i
Low to High transition -
High to Low transition -,
High-Z (tri-state) Z

Undefined

PLOT also sets up the node list that specifies the
nodes monitored by the Virtual Logic Analyzer. Refer
to the section tabbed Virtual Logic Analyzer.

FS-75

FS-76

Examples:

Like WATCH and STATUS, PLOT displays a line of

the following format:
Simulation Cover : n %

where n indicates the percentage of nodes in the
design that have had a transition from low to high or
high to low during simulation. This feature informs you
of how well the design has been exercised during a
particular simulation run.

PLOT CLOCK A? OUTPUT1 @PLOT.OUT ;
(creates the file PLOT.OUT, containing output
waveforms of OUTPUT1, CLOCK, and all
nodes beginning with A)

PLOT CLOCK INPUT OUTPUT ;

(creates <filename>.WAV, containing output
waveforms of CLOCK, INPUT, and OUTPUT)

PLOT ON ; (turns plotting on)

PLOT OFF ; (turns plotting off)

A+PLUS User Guide

QUIT

Format:

Purpose:

Description:

Example:

Functional Simulator

'‘QUIT' ;
Terminates the current simulation session.

When QUIT is used in interactive mode, the
Functional Simulator prompts you to indicate whether
you wish to terminate the simulation. If you do, you are
returned to DOS or the APLUS Menu. If the Functional
Simulator encounters a QUIT command in a Command
File called up by the EXEC command, it closes the file
and returns to take simulation command input from the
file containing the EXECUTE command or from the
keyboard.

If the Functional Simulator is running in batch mode,
the QUIT command terminates the simulation
immediately.

QUIT ;

FS-77

RESTORE (REST)

Format: 'REST' [@<pathname>] ;

Purpose: Restores the state of the Functional Simulator that was
saved in the Save File when the SAVE command was
last issued. The default filename is <JEDEC
filename>.SAV. This command is optional.

Description: RESTORE loads the Save File named by
@<pathname> and you may resume simulation from
the state that was saved, or change parameters and
begin/continue simulation.

Example: REST @sim.sav ;

(restores simulation environment and state
from the file sim.sav)

FS-78 A+PLUS User Guide

SAVE

Format: 'SAVE' [@<pathname>] ;

Purpose: Creates a file that saves the simulation environment
and state so that it may be restored later with the
RESTORE command. The default filename is
<JEDEC filename>.SAV. This command is optional.

Description: Saves the current simulation environment in the
specified Save File. SAVE does not affect the
simulation process and simulation may continue from
this point.

Example: SAVE @sim.sav ;

(saves simulation environment and state
to the file sim.sav)

Functional Simulator FS-79

SIMULATE (SIM)

FS-80

Format:

Purpose:

Description:

Examples:

'SIM' [<cycle value>] ;

Runs the Functional Simulator. The specified cycle is
the cycle at which the Functional Simulator will stop.
This command is required.

If a cycle value is not specified, the SIM command
executes for one cycle. In conjunction with a cycle
value, SIM executes to the specified cycle.

You may interrupt simulation by pressing <Esc>.

SIM ;

SIM 10 ; (Simulator executes to cycle 10)

SIM +10 ; (Starting at the current cycle, the
Simulator executes 10 cycles)

A+PLUS User Guide

STATUS

Format:

Purpose:

Description:

Example:

Functional Simulator

'STATUS' ;

Displays information on the state of the simulation. This
command is optional.

STATUS informs you of the JEDEC filename and
whether the PLOT, WATCH, and LOG commands
are turned on or off.

Like the Watch and Plot files, STATUS displays a line
of the following format:

Simulation Cover : n %

where n indicates the percentage of nodes in the
design that have had a transition from low to high or
high to low during simulation. This feature informs you
of how well the design has been exercised during a
particular simulation run.

STATUS ;

FS-81

SYMBOLS (SYMB)

FS-82

Format:
Purpose:

Description:

Examples:

'SYMB' <node list> ;
Displays a list of node names used in the design.

This command may be used to obtain a list of all
predefined node names for each element of BUSTER
(EPB1400) buses, pins and macrocells, as well as of
user-assigned node names. Buses are given
predefined names .B0 to .B7; macrocells are given
predefined names .M1 to .M#, where #is a 1- or 2-
digit number. Pins are given predefined names .P1 to
.P#, where #is a 1- or 2-digit number. (EP1800G pin
names also include a letter, e.g., .PA10.) Predefined
node names may be used to reference buried
registers and other unnamed nodes.

Pattern matching with the wildcard characters ? and *
may be used with the SYMB command.

SYMB *; (displays all predefined and user-
assigned node and group names)
SYMB T* ; (displays all user-assigned node and

group names starting with T)
SYMB .M* ; (displays all predefined macrocell
names)

A+PLUS User Guide

VECTOR (VEC)

Format:

Purpose:

Description:

Example:

Note:

Functional Simulator

'VEC' [@<pathname>] ;

Tells the Functional Simulator which Vector File to use
for input vectors. The default filename is <JEDEC
filename>.VEC. If an extension is not specified, the
filename defaults to .VEC. This command is required.

The Functional Simulator uses vectors that define the
input levels for the design to be simulated. Therefore,
if there is no PATTERN command, VEC must be
used at least once before starting the simulation. The
VEC command may be used repeatedly, with each
new command indicating a change in the source of
vector definitions (i.e., a different Vector File). Each
time the Functional Simulator encounters the VEC
command, it closes the current Vector File (if one
exists) and opens the requested file. It builds a table of
vector levels based on the contents of the file and
refers to this table whenever a vector is required for
simulation.

VEC @sim.VEC ;
(read input vectors from the file sim.VEC)

Refer also to the detailed description under Vector File
Input.

FS-83

VIEW

FS-84

Format:

Purpose:

Description:

Examples:

s

'VIEW' ;

Invokes the Virtual Logic Analyzer.

Allows you to view simulated output waveforms
interactively in a graphical display. The PLOT
command specifies which signals are to be monitored
by the Virtual Logic Analyzer.

Extensive on-line HELP files describe every
subcommand available with VIEW.

VIEW ;

Refer to the section tabbed Virtual Logic Analyzer for a
detailed description of this command.

A+PLUS User Guide

WATCH

Format:

Purpose:

Description:

Examples:

Note:

Functional Simulator

'WATCH' 'ON' | 'OFF' | <node list>
[@<pathname>] ;

Prints the logic levels of the nodes in table form (in
numbers, X’s, and Z’s). The default filename is
<JEDEC filename>.TBL. This command is optional.

Node levels are printed in the order of the node list and
according to base specifications (i.e., binary, octal,
decimal, or hexadecimal values). If a filename is
included, output is sent to the specified file; otherwise,
it goes to the default <JJEDEC filename>.TBL. Logic
levels of nodes printed are those reached after the
design has stabilized following the clocking of the
input vector.

Like PLOT and STATUS, WATCH displays a line of
the following format:

Simulation Cover : n %

where n indicates the percentage of nodes in the
design that have had a transition from low to high or
high to low during simulation. This feature informs you
of how well the design has been exercised during a
particular simulation run.

WATCH CLOCK A? OUTPUT1 @watch.out ;
(creates the file watch.out, containing tabular
output of OUTPUT1, CLOCK, and all nodes
beginning with A)

WATCH CLOCK INPUT OUTPUT ;

WATCH ON ; (turns watching on)

WATCH OFF ; (turns watching off)

Pattern matching with the wildcard characters ? and *
may be used with WATCH. For example, if you enter
WATCH *E; all nodes with names up to eight
characters long and ending with E are displayed.

FS-85

Virtual Logic Analyzer
(VIEW Command)

The Virtual Logic Analyzer (VLA) enables you to interactively view and
analyze the node waveforms of your design. It is invoked with the
VIEW command and incorporates a variety of features. The following
pages give a detailed description of VLA features and a list of all
available commands.

Virtual Logic Analyzer LA-1

Functional Description

LA-2

The Virtual Logic Analyzer uses a data buffer that contains all node
level and timing information generated by the Functional Simulator
(This information is also included in the Plot File.) This information may
be displayed in three independent windows, as illustrated in Figure

LA--1.

1+ } Data Buffer

Window 3

—_—

Window 1
~

L1111

LLLTIN

:i Window 2

'\}

11

111

-
-

|

Windows

« up to 256 node waveforms
« any combination of waveforms
« up to 32 buses of 8 signals each

Full
Window

» 256 nodes
512 vector clocks

node level
information

Split
Window

/

Figure LA-1.

\

/ Split
Window

Virtual Logic Analyzer

Virtual Logic Analyzer

Each window is completely independent and may display any
combination of information contained in the data buffer.

The data buffer may contain up to 512 vector clocks: for example, if you
simulate to 1000 vector clocks, only the most recent 512 vector clocks
will be stored in the data buffer.

The PLOT ON and PLOT OFF commands determine the range of
the simulation that should be output in waveform, i.e., they control the
number of vector clocks for which the specified node level information
is stored in the data buffer. Using PLOT ON and PLOT OFF more
than once in one file creates discontinuities in the cycle value of
adjacent waveform segments. Such discontinuities are marked with a
flashing character in the waveform. As you move the waveform cursor
across this flashing character, the increment of the cycle number
located on the dotted line indicates the the discontinuity in the
waveform. The character flashing may be toggled OFF by pressing
<f>.

The Virtual Logic Analyzer provides two main facilities, each of which is
accompanied by extensive pop-up help windows:

(1) Manipulation of the window display by

zooming

panning

searching for a specified set of node levels
splitting the screen horizontally into two windows

(2) Manipulation of the displayed node waveforms by

. reordering nodes

. combining nodes into a bus or expanding the bus into its
individual nodes

. adding and deleting nodes from the display

. highlighting breakpoints

Virtual Logic Analyzer LA-3

Invoking the Virtual Logic Analyzer

The Virtual Logic Analyzer is set up with the PLOT command. After
entering the PLOT command to specify the nodes you wish to view,
followed by the SIM command, you type at the prompt:

0> VIEW <Enter>

The main VIEW screen is displayed, as shown in Figure LA-2.

s You may use the VIEW command when the Functional
Simulator is run in batch mode. Simply type the
command into the input file (.CMD) along with the other
commands you wish to enter.

LA-4 Virtual Logic Analyzer

Full Window

The full window screen, shown in Figure LA-2, is divided into display
fields that show the current status of the Virtual Logic Analyzer and
window configuration.

(" l1=F)
A
¢LOC __r_Lr_l_l_‘_'_.LrXXXXXXXXXXXXX)O(XX
) W
t Flashing Indicator f
Node Name Undefined
Node Name, Nodes
Highlighted
Scale Indicator
Data Range
I\CIyCIZe Vector Number of
umoer Clocks Nodes in
Filename per Cycle Data Buffer
L. ¥.... 5 i Wi W B —
Range: 5 to 10 Name: BEVDISJED Cycle: 4 Nodes: 8
_ /

Figure LA-2. Full Window Screen

The fields are as follows:

Scale Indicator Shows the scale of waveform characters per vector
clock. Four scales are available: 1:1, 1:2, 1:4, and 1:8. At the
scale of 1:1 (the default), one waveform character equals one
vector clock. At the 1:8 scale, one character equals eight vector
clocks and the entire data buffer (512 vector clocks) is displayed
on the screen.

Virtual Logic Analyzer LA-5

LA-6

Flashing Indicator Indicates whether flashing is ON (the default) or
OFF. Flashing occurs at the vector clocks where a breakpoint
has been hit or where the waveform has been discontinued and
then restarted at higher vector clocks (i.e., in the case of two
adjacent but not contiguous vector clocks).

Node Name Any one of the nodes specified in the PLOT command
and selected for display in the waveform list. The waveform list
may contain any combination of nodes and buses in any order up
to 256 waveforms. Each node may appear any number of times.
Up to 11 nodes may be displayed on the screen at any one time.

Node Name, Highlighted Indicates that a node has been marked
with the <t> or <> key. When you press <Space>, the node is
selected and may now be moved, duplicated, deleted, or or
grouped into a bus.

Data Range Indicates the range of valid vector clocks that have been
captured in waveform. Each node may have information
representing up to 512 vector clocks. Node level transitions at
larger scales (e.g., 1:8) that are lost due to poor display scaling
are shown with parallel vertical lines (l1) in the waveform.

Cycle Number Indicates the vector clock cycle where the cursor is
currently located.

Filename Indicates the design JEDEC filename.

Vector Clocks per Cycle Indicates how many vector clocks have
been specified per cycle length. For example, “Cycle: 4"
indicates that the cycle number is incremented at every fourth
vector clock.

Number of Nodes in Data BufferIndicates the total number of
nodes in the data buffer that contains all node level and timing
information. Up to 256 nodes with 512 vector clocks each may be
in the buffer and may be called up for display in any one of the
three windows.

Virtual Logic Analyzer

Window Display Control

The Virtual Logic Analyzer enables you manipulate the window layout
and configuration so that you may quickly display and easily move
around the contents of the entire data buffer. The major windowing
features are zooming, panning, searching for sets of node logic levels,
and splitting the window.

Zooming

You may zoom to any one of four display scales with the <PgUp> and
<PgDn> keys. The scale indicator in the upper-left-hand corner of the
window display shows the current scale.

= At the 1:1 scale (the default), one character represents one
vector clock; 64 vector clocks are displayed at any one time.

. At the 1:2 scale, one character represents two vector clocks; 128
vector clocks are displayed at any one time.

. At the 1:4 scale, one character represents four vector clocks;
256 vector clocks are displayed at any one time.

L] At the 1:8 scale, one character represents eight vector clocks,
and 512 vector clocks—i.e., the entire data buffer—are
displayed.

= Vector clocks are compacted as you zoom out. A node
level that changes during the period represented by one
character at a particular zooming scale (i.e., within 2, 4, or
8 vector clocks if the scale is 1:2, 1:4, or 1:8,
respectively) will disappear from the screen. Such a node
transition is shown in the waveform with pairs of vertical
lines (I1).

Virtual Logic Analyzer LA-7

Panning

The Virtual Logic Analyzer allows you to pan across the entire data
buffer.

Three cursors, shown in Figure LA-3, are provided for panning:

(¢1:1=F ™\
ENABLE == - XXX
RESET XXX

v

Inactive Waveform Cursor Active Waveform Cursor

COINDROP [I [l_[l XXX

Node Cursor Cycle number at current
(highlighted node name) active cursor location
e i 20

L Range: 5 to 25 Name: BEVDIS.JED Cycle: 4 Nodes: 8

Figure LA-3. Node and Waveform Cursors

Node Cursor

<t> or <> moves the node cursor vertically from node name to node
name. The current cursor location is displayed as a highlighted node
name.

LA-8 Virtual Logic Analyzer

After you highlight a node name with the node cursor and press
<Space>, the node name begins flashing. The flashing indicates that
the node has been selected and will remain so even if you move the
node cursor. This process allows you to target and select one or more
nodes for reordering, deleting, or grouping into a bus. Refer to Table
LA-1 for a summary of the commands that move the node cursor.

Waveform Cursors

Two horizontal waveform cursors are provided: one active and the
other inactive. On a black/white display screen, the location of these
cursors is indicated by highlighted characters in the waveforms. On a
color screen, the two cursors have different colors.

The inactive cursor is locked in place, while the active cursor may be
moved left or right. (Refer to Table LA-1 for a summary of the
commands that move the waveform cursor.)

When you press <*s>, the roles of the cursors are reversed so that the
active cursor becomes inactive and vice versa. This feature allows you
to jump back and forth between two sections of the data buffer.

The cycle of the vector clock associated with the active waveform
cursor is always displayed on the dotted line at the bottom of the
window and moves with the cursor. The timing associated with this
cycle may be measured relative to time 0 (an absolute number) or
relative to the inactive cursor (a relative number).

Example: If the inactive cursor is located at cycle 10 and the active
cursor is at cycle 20, the number 20 is displayed at the
bottom of the window, indicating that you are at cycle 20
of the waveform. If you press <Enter>, this number
changes to +10, indicating that the active cursor is 10
cycles beyond the inactive cursor. If you press <*>, the
active cursor becomes inactive, and the new active
cursor is located at cycle -10, namely 10 cycles before
the inactive cursor. This feature enables you to quickly
measure the length of node pulses.

Virtual Logic Analyzer LA-9

Highlighted dashes on the top window border indicate where these
two horizontal cursors are located relative to the beginning and end of
the entire data buffer. Refer to Figure LA-4.

Inactive waveform cursor location relative
to beginning and end of data buffer

Active waveform cursor location relative
to beginning and end of data buffer

[1:1=F T\
CLOCK XXX
ENABLE XXX
RESET XXX
COINDROP [I T LJ H XXX

Inactive waveform cursor Active waveform cursor
... 20 oo
Range: 5 to 25 Name: BEVDISJED Cycle: 4 Nodes: 8

Figure LA-4. Relative Cursor Location

LA-10 Virtual Logic Analyzer

Searching

The Virtual Logic Analyzer also provides a Search command (<s>) to
search for a specified set of node levels. When <s> is invoked, you are
prompted for a list of node levels. The first node you enter is the one
highlighted with the node cursor; the next one is the one immediately
below, etc.

To locate all instances of a particular set of node levels in the entire data
buffer, use the Repeat Search command (<r>).

Splitting the Window

The split window facility lets you split the display screen horizontally.

To split the window, press while the main window is displayed.
The window is split as shown in Figure LA-5.

Virtual Logic Analyzer LA-11

LA-12

— Highlighted or different colored box corners indicate the active
window. <Ins> toggles between active and inactive.

Each window is completely independent.
(; ’ r—Compacted nodes in zoomed out display
F 1:4=F=

Boundaries may be moved up or down
to enlarge desired viewing area.

5
Range: 5to 10 Name: BEVDISJED Cycle: 4 Nodes: 8

g J

Figure LA-5. Split Window

When the window is first split, it is divided into halves, each of which
displays state of the first few nodes in the buffer. However, each
window is completely independent and may be configured separately.

One of the halves is always active, while the other is inactive. Initially,
the top window is active. You may toggle the windows from active to
inactive with the <Ins> key. Changes may be made only in the active
window.

You may enlarge a window by moving the dividing boundary up
(<Shift><T>) or down (<Shift><{>).

Virtual Logic Analyzer

Because the windows are independent of each other, you may:

" Zoom to the smallest scale in one window and to the largest in
the other.
. Change the size of a window to display additional waveforms, up

to a maximum of 10 displayed in each split window.

- Use the node and waveform cursors in each window, or lock
them (<I>) so they move concurrently in each window.

. Display a total of 32 buses, combining up to 8 node waveforms

each, in any one window or combination of windows at any one
time

Virtual Logic Analyzer LA-13

Node and Bus Control

Nodes

LA-14

Nodes and their associated waveforms may be tagged and selected for
quick and easy manipulation such as adding, deleting, reordering, and
combining into a bus.

Each window contains a waveform list which may consist of any
combination of the nodes specified in the data buffer (maximum 256
nodes). A node may appear any number of times as long as the entire
list does not exceed the limit of 256 nodes.

Move a node by first marking it with the node cursor (<t> or <{>). Then
press <Space> to actually select the node (it will continue to flash even
when you move the node cursor to another node). After the node is
selected, you may move it with the Move command (<m>); it will then
be placed above the highlighted node.

Example: To move the node COINDROP, shown in Figure LA-3,
so that it immediately follows CLOCK, you highlight
COINDROP, press <Space>, move the node cursor to
ENABLE, and then press <m>.

Delete a node by first selecting it with <Space>. Then press <d> (the
Delete command). (Note: Press <u> to undo any command that
changes the order or grouping of nodes.)

Add a node from the data buffer with the Add command (<a>). Pattern
matching with the wildcard characters * and ? may be used to add more
than one node.

Example: To add all nodes in the data buffer that start with “D” to
the window, you highlight the node before which the
new nodes should be inserted, press <a>, and type
D* <Enter> into the prompt box:

Refer to Table LA-1 for a summary of available commands.

Virtual Logic Analyzer

Buses

The Bus command () enables you to create buses with any
combination of the nodes stored in the data buffer. Up to eight nodes
may be combined into a bus. Refer to Figure LA-6, which shows one
window with individual nodes and another with four nodes combined
into a bus. The most significant bit is always at the top of the bus; the
least significant is at the bottom.

Buses may be merged with other nodes and buses provided the total
number of bits is no greater than eight. If bus waveforms are placed
next to one another, their values may be combined and read as one.
With this “vertical stacking” feature, you can in effect create buses that
are wider than eight bits. You may create up to 32 buses in any one
window or combination of windows at any one time.

The value of a bus is displayed in hex numbers. It is displayed only
when the value changes, thus indicating the transition points of the
bus. A bus value that changes during the period represented by one
character at a particular zooming scale (i.e., within 2, 4, or 8 vector
clocks if the scale is 1:2, 1:4, or 1:8, respectively) will disappear from
the screen. This compaction of values is shown in the waveform with
pairs of vertical lines (ll).

High-impedance buses are shown with two vertically stacked ‘z’s and
unknown bus values are shown with two vertically stacked ‘x’s.

The Expand Command (<e>) allows you to expand a bus into its
individual nodes. After expanding the bus, you may undo this
command by pressing <u> to redisplay the bus. This technique allows
you to quickly view the nodes that comprise a particular bus.

Virtual Logic Analyzer LA-15

/[1:1=F “\

ENABLE XXX
RESET XXX

COINDROP — 1

— @~ Four nodes are combined XXX
CUPFULL — @ in BUS A after beingtar- [|

geted with <UpArrow> or XXX
DROPCUP __ &~ _DpArows and selected L[

POURDRNK &~ with <Space>. M XXX
XXX

STROBE Mn Ml

........... S
Range: 5t0 25 Name: BEVDISJED Cycle: 4 Nodes: 8 y

([l:1=F O\
CLOCK ﬂmm_mm_nnrm_rumn_’:]

ENABLE
RESET XXX
0 XXX
BUS A (4) 4 XXX
STROBE
Value stays constant during HEX number base
period marked by highlighted bar for all bus values
Number of nodes Top number: most significant nibble (4 bits)
combined in bus Bottom number: least sign. nibble (4 bits)

Figure LA-6. Bus Waveform

LA-16 Virtual Logic Analyzer

Summary of VIEW Subcommands

The VIEW command provides a variety of subcommands. These
subcommands fall into two categories: those that manipulate the
window display and those that manipulate the node waveforms. Table
LA-1 summarizes all subcommands; it is followed by a detailed
explanation of the commands in each category.

Table LA-1.

VIEW Subcommands (Part 1 of 2)

WINDOW MANIPULATION

CATEGORY KEY(S) FUNCTION

Cursor Moves | <> Move left 1 character
<> Move right 1 character
<Home> Move to left window edge
<End> Move to right window edge
<Ctrl><¢> Jump left 8 characters
<Cirl><—> Jump right 8 characters
<Ctrl><Home> Move to oldest vector clock
<Ctrl><End> Move to newest vector clock
<+> Center display on cursor
<*> Switch cursors
<c> Toggle black&white/color

window and display

<I> Lock cursors in split window
<p> Print the window
<r> Repeat search for node levels
<8> Scarch for node levels
<v> Vertically compress the window

Zooming <PgUp> Zoom out
<PgDn> Zoom in

Window Split | <Shift><T> Move split window boundary up
<Shift><} > Move split window boundary

down

 Toggle window split
<Ins> Select active window

Virtual Logic Analyzer

LA-17

Table LA-1.

VIEW Subcommands (Part 2 of 2)

WAVEFORM MANIPULATION
CATEGORY KEY(S) FUNCTION
Nodes <t> Move node cursor up 1 node

<> Move node cursor down 1 node
<Ctrl><PgUp> |Scroll up one display window
<Ctrl><PgDn> |Scroll down one display window
<Space> Select node (flashing)
<Enter> Toggle relative and absolute
cursor time
<a> Add node(s)
<d> Delete node(s)
<f> Toggle flash for highlighted
vector clocks
<m> Move 1 or more selected nodes
Buses Create a bus
<e> Expand a bus
Undo <u> Undo previous command
Quit Help <Esc> Exit Help file
Quit VIEW <q> Exit Virtual Logic Analyzer

I

If you misspell a command, a summary of VLA commands
is automatically displayed. This Help window provides
access to on-line information about each VLA command.

LA-18 Virtual Logic Analyzer

Window Manipulation Commands

The windowing facility lets you examine any portion of the simulated
design, regardless of the screen limitations. These commands make it
easy to move around the display window.

Window manipulation commands enable you to:

move the cursor
zoom in and out
vertically compress the screen display
split the window
print the window

Each command is described in detail below. Refer to Table LA-1 for a
command summary.

<e>/<—> Moves the active waveform cursor to the left/right by one
character and scrolls the window if necessary. Depending on
the current scale setting, this command may move the cursor
up to eight vector clocks.

<Home>/<End> Moves the active waveform cursor to the
leftmost/rightmost position of the node waveforms displayed
on the screen.

<Ctrl><e>/<Ctrl><—+> Moves the active waveform cursor to the
left/right by eight characters and scrolls the window if
necessary. Depending on the current scale setting, this
command may move the cursor up to 64 vector clocks.

<Ctrl><Home>/<Ctrl><End> Moves the active waveform cursor to
the oldest (first)/newest (last) vector clock in the waveform

buffer.
<+> Centers the window display on the active waveform cursor.
<*> Toggles the state of the waveform cursors: the inactive

waveform cursor becomes active and vice versa.

Virtual Logic Analyzer LA-19

LA-20

<C>

<I>

<p>

<r>

<S$>

<V>

Toggles between black/white and color display. If your
terminal simulates color with gray scales, we recommend that
you turn color simulation OFF.

In split window mode, <I> locks the two active cursors
together so that when you move the cursor in the active
window, it moves proportionately in the inactive one. This
feature allows you to simultaneously scroll through the same
set of nodes at two different display scales. An L displayed
on the left-hand side of the upper window indicates that the
cursors are locked.

Prints the window directly to your printer or saves a screen
dump to a file. After you press <p>, you may type a
pathname or simply press <Enter> to print the screen.

Repeats the most recent search of node levels. (Refer to the
description of <s> for details.) This command enables you to
quickly locate all occurrences of a particular node set.

Searches for a set of specified node levels. When <s> is
invoked, you are prompted for a list of node levels. The first
node level you enter must be the one highlighted by the
node cursor; the second must be the one immediately
below, etc. Signals may not be skipped, so you may need to
reorder nodes before entering the list.

If you have an Enhanced Graphics Adapter (EGA) card, this
command toggles the screen display between 25 and 43
lines. This command allows you to display additional
waveforms on the screen.

<PgUp>/<PgDn> Zooms to any one of four display scales. The

scale indicator at the upper-left-hand corner of the screen
displays the current scale.

= At the 1:1 scale (the default), one character represents
one vector clock; 64 vector clocks are displayed at any
one time.

s At the 1:2 scale, one character represents two vector
clocks; 128 vector clocks are displayed at any one time.

Virtual Logic Analyzer

= At the 1:4 scale, one character represents four vector
clocks; 256 vector clocks are displayed at any one time.

= At the 1:8 scale, one character represents eight vector
clocks, and 512 vector clocks—i.e., the entire data
buffer—are displayed.
<Shift><?>/<Shift><l> Moves the dividing boundary of the split
window up or down one node so that the sizes of the two
windows may be adjusted. In split window mode, a window
may display a maximum of 10 nodes.
 Toggles between split window and full window mode.

<Ins> Toggles the split windows from active to inactive.

Waveform Manipulation Commands

The nodes stored in the data buffer and their associated waveforms
may be grouped, merged into buses, and deleted from or added to the
window display.

Waveform manipulation commands enable you to:

L] manipulate nodes
. manipulate buses

Each command is described in detail below. Refer to Table LA-1 for a
command summary.

<t>/<d> Moves the node cursor up/down one node.
<Ctrl><PgUp>/<Ctrl><PgDn> Moves the node cursor up/

down by one displayed screen (i.e., one window’s worth) of
information.

Virtual Logic Analyzer LA-21

<Enter>

<Space>

<a>

<d>

<f>

LA-22

Toggles the absolute and relative timing information
associated with the active cursor. The absolute value is that
which is measured from vector clock 0 to the vector clock at
the current active cursor location. The relative value is the
difference between the value at the inactive cursor location
and the value at the current active cursor location. When
<Enter> is used with the Switch Cursors command (<*>),
you may quickly measure the timing difference between two
sets of vector clocks.

Selects a marked node. After a node is marked with the node
cursor (i.e., highlighted) and you press <Space>, the node
flashes. The flashing indicates that the node has been
selected and may now be moved, deleted, or merged into a
bus. A node is “unselected” (i.e., the flashing stops) if you
press <Space> again.

Adds a selected node from the data buffer to the window
display. First place the node cursor on the node which will
immediately follow the node(s) to be inserted. Then press
<a> and type one or more node names into the prompt box.
Press <Enter>. You may enter up to 256 nodes or 32 buses
comprised of these nodes; nodes and buses may appear
more than once. Signal names specified may include the
wildcard characters * and ?.

Deletes one or more nodes or buses from the window
display. First select the node(s) and/or bus(es) you wish to
delete with the node cursor, then press <d>.

Toggles flashing of node characters (default = ON). The F on
the left-hand side of the top window border indicates that the
flashing feature is turned on. Breakpoints and non-
contiguous vector clocks are identified with a flashing
waveform character. If you press <f>, the flashing stops and
the F on the window border is deleted. However, even if
node flashing is turned off, a flashing segment on the
window border remains, indicating the location of the
breakpoints and non-contiguous vector clocks relative to the
beginning and end of the data buffer.

Virtual Logic Analyzer

<m>

Moves a selected node. After a node name is marked with
the node cursor (i.e., highlighted) and selected with
<Space>, it flashes. You then move the node cursor to the
node or bus name before which you wish to place the
selected node and press <m>. You may move any number
of nodes and buses, which will retain the same sequence
they had in the waveform list.

Buses are selected, moved, and deleted with the same commands as
nodes. Only the following two commands are bus-specific:

<e>

Virtual Logic Analyzer

Forms a bus by merging all selected nodes into one bus
waveform. The nodes to be merged must first be selected
with <Space> (i.e., so that they are flashing). Then you place
the node cursor on the node before which you wish to place
the bus and press . The prompt box prompts you for a
bus name. Type the name and press <Enter>.

The most significant nibble (4 bits) is at the top of the display,
the least significant nibble is at the bottom.

Since groups cannot be plotted, this command allows you to
re-form the Buster (EPB1400) internal bus from its individual
nodes (.B0 through .B7).

A bus may contain 1 to 8 nodes. If you need a wider bus,
simply create a second bus with additional nodes and
place the buses next to each other.

Expands a highlighted bus into its individual nodes. When
used with the Undo command (<u>) the Expand command
may be used to quickly view the members of a bus and then
merge them again.

LA-23

To undo a command, quit a Help file, or exit the Virtual Logic Analyzer,
the following commands are available:

<u> Removes the effect of the most recent <a>, <d>, , or
<e> command. Even if you quit the Virtual Logic Analyzer
and then reenter it with the VIEW command, the Undo
command will undo the most recent one of these commands.
Note also that when this command is used with the Expand
command (<e>), it provides a quick way to expand a bus to
view its individual members and then merge them together
again.

<Esc> Exits a Help file in the Virtual Logic Analyzer.

<q> Quits the Virtual Logic Analyzer and returns you to the
Functional Simulator.

LA-24 Virtual Logic Analyzer

Functional Simulator Messages

This section alphabetically lists the error and warning messages
generated by the Functional Simulator (FSIM). Each entry describes
the likely cause of the message and, when appropriate, gives
suggestions for corrective action. (Messages with the prefixes ERR-,
INFO-, and WARN.- are listed in A+PLUS Messages in the A+PLUS
Reference Guide.)

Functional Simulator error messages indicate errors that must be
corrected before simulation can continue, while warning messages
indicate potential problems which may require corrective action.

When the Functional Simulator is run in batch mode, error messages
are preceded by the line number in the Command file that contains the
error, in the following format:

<filename>.CMD line # - <error message>

All warning messages begin with Warning:

Functional Simulator Messages-1

Error Messages

Bad cycle value

CAUSE: You have entered a cycle value that contains non-decimal
numbers or is less than the current cycle value.
ACTION: Enter a cycle value consisting of decimal numbers greater

than or equal to the current cycle value.

Bad group value

CAUSE: The Functional Simulator found a group value that had too
many digits or digit(s) of the wrong base.
ACTION: Ensure that the group value is expressed in the same base

(i.e., decimal, octal, hexadecimal, or binary) as the base
specified in the GROUP command.

Bad JEDEC file

CAUSE: The specified JEDEC file has been corrupted or was not
created by the Altera Design Processor.

ACTION: Resubmit your design file to the ADP and generate a new
JEDEC file. (Note: only JEDEC files produced by the ADP
may be used with the Functional Simuiator.)

Bad node value

CAUSE: A value for a node was specified in a node value list that
contained a character other than 0, 1, X, or Z.

ACTION: Reenter the node value with one of the legal characters 0,
1, X, or Z.

Bad repeat factor

CAUSE: The Functional Simulator found a repeat factor greater than
10,000 or which contained a non-decimal character in a
vector pattern.

ACTION: Ensure that repeat factors are less than 10,000 and contain
only decimal numbers.

Messages-2 Functional Simulator

Breakpoint number does not exist

CAUSE:
ACTION:

You tried to reference a breakpoint with a breakpoint number
that does not exist.

Use the BREAK command to show a summary of the
existing breakpoints.

Can’t continue -- specify new cycle value with SIM

CAUSE:

ACTION:

You have attempted to execute a CONTINUE command,
but the Functional Simulator has already reached the cycle
specified in the most recent SIMULATE command.

Use the SIMULATE command (with an optional cycle value)
to continue simulation.

Can’t open <name> file

CAUSE:

ACTION:

After checking the specified directory and/or current DOS
path, the Functional Simulator could not find the specified
file (i.e., JEDEC, Vector, Command, or JEDEC Description
File [JDF]) for the design. This message may also indicate
that the file is corrupted; the disk is full, write-protected or
corrupted; or that available memory is insufficient to open
the file. (In batch mode this error is fatal.)

Check the path/filename and ensure that you have 128K of
disk space, enough memory to run A+PLUS, and that the
disk is not corrupted or write-protected. If the file specified is
a JDF, move the file to the APLUS directory. (You may
recopy the JDF from the distribution diskette.)

Can’t plot groups

CAUSE:
ACTION:

Functional Simulator

A group was found in a PLOT command node list. Groups
cannot be output in waveform.

Plot the individual members of the group. If the group you
wished to plot was a BUSTER internal bus, plot the individual
elements of the bus with the predefined names .B0 to .B7.

Messages-3

Can’t restore—JEDEC file changed or Save file corrupted

CAUSE:

ACTION:

The Save File named in a RESTORE command could not be
used to restore the state of the Functional Simulator either
because the Save File has been corrupted, or a
different/changed JEDEC File is being used. Note that files
created by the SAVE command are associated with the
JEDEC file that is in use when the SAVE command is
executed.

Ensure that you have used the Save File that corresponds to
the JEDEC file you wish to simulate. (If you have changed
the JEDEC file since the Save File was created, you cannot
restore the saved environment; you must begin a new
simulation session.)

Can’t simulate without input vectors

CAUSE:

ACTION:

A SIM command was executed before a VECTOR or
PATTERN command. Since no input vectors have been
defined, simulation cannot begin.

Before using the SIM command, use the VECTOR
command to specify a Vector File or enter input vectors with
the PATTERN command.

Command ended prematurely

CAUSE:

ACTION:

A command terminator (either EOL in interactive mode or a
semicolon in batch mode) was found before the command
was complete.

Reenter the command. Remember that commands may span
lines only in batch mode, not interactive mode.

Command syntax error

CAUSE:
ACTION:

The command line contains a syntax error.
Refer to the section entitted Command Reference for the
correct syntax of all Functional Simulator commands.

Command terminator (<Enter> or ';') expected

CAUSE:

ACTION:

Messages-4

A command terminator (either <Enter> in interactive mode
or a semicolon in batch mode) was not found at the end of a
complete command.

Terminate all commands with <Enter> (in interactive mode)
or a semicolon (in batch mode).

Functional Simulator

Corrupted Save file

CAUSE:

ACTION:

You cannot use the Save File specified in a RESTORE
command because it is either corrupted or was not produced
by a Functional Simulator SAVE command.

Enter new simulation conditions.

Cycle range expected

CAUSE:
ACTION:

The keyword RANGE in the BREAK command was not
followed by a cycle range.
Enter a cycle range after each RANGE keyword.

Equals sign expected

CAUSE:
ACTION:

An equals sign (=) was expected but not found (e.g., in a
group, cycle, or node value list definition).

Refer to the section entitled Command Reference for the
correct syntax of all Functional Simulator commands.

Group names cannot have subnode extensions

CAUSE:
ACTION:

A subnode extension was used on a group name. You may
only reference the subnodes of an individual pin.

Specify the individual members of the group with subnode
extensions.

Groups may not be nested

CAUSE:
ACTION:

I/O error

CAUSE:

ACTION:

Functional Simulator

A group name was found in a group member list. A group may
not contain another group.
Redefine groups to eliminate nesting.

A Functional Simulator input file can’t be found anywhere on
your DOS path, can’t be opened/read/closed because
available memory is insufficient or the disk is full or
corrupted, or the file is corrupted.

Ensure that you have 128K of disk space and enough
memory to run A+PLUS, that your DOS path includes the
current directory, that the diskette is not write- or read-
protected, corrupted, or not in the disk drive.

Messages-5

Incompatible or obsolete <str> file

CAUSE: When the Functional Simulator opened the specified file (i.e.,
a JEDEC Description File [.JDF] or Part Description File
[.PDF)), it found that the file was corrupted or from an earlier
version of A+PLUS.

ACTION: Reinstall the JDFs/PDFs (provided on the distribution
diskettes) in the APLUS directory on your computer. If this
error message persists, contact Altera Applications.

INIT command allowed only at cycle=0

CAUSE: An INIT command was executed when the cycle value was
greater than 0.

ACTION: Use the FORCE command instead of INIT when the cycle
value is greater than 0.

Internal error: <str>

CAUSE: There is an internal error.

ACTION: Should you encounter this message, please contact Altera
Applications and describe the error number/text and the
conditions under which it occurred.

Invalid commands in breakpoint command list

CAUSE: The SIM, PATTERN, or QUIT command was encountered
in a breakpoint command list.

ACTION: Remove all SIM, PATTERN, and QUIT commands from
breakpoint command lists.

Invalid group name

CAUSE: A group definition contains an invalid group name. This name
may have been a node name or a Functional Simulator
reserved word.

ACTION: Rename the group. (Refer to the section entitled Reserved
Words.)

Line too long

CAUSE: While reading input, the Functional Simulator encountered a
line containing over 256 characters.

ACTION: Insert a line break to reduce the line length to 256 characters
or less.

Messages-6 Functional Simulator

LOG, PLOT, WATCH, VECTOR, or @<pathname> expected

CAUSE: The keyword LOG, PLOT, VECTOR or WATCH, or an @
followed by a pathname was expected after the DISPLAY
command.

ACTION: Enter one of the four keywords to display the Log, Plot,
Vector or Watch file for the current design. Enter
@<pathname> to display any ASCII file.

Mismatched parentheses

CAUSE: A left or right parenthesis is missing from a vector pattern.
ACTION: Check the location of parentheses and ensure that there is a
right parenthesis for each left parenthesis.

Missing '@’ or bad character in pathname

CAUSE: The pathname you have specified contains an illegal
character (e.g., >) or is not preceded by the required @ (at-
symbol).

ACTION: Ensure that all pathnames are preceded by an @-symbol
and contain only legal characters.

Nested infinite repeat factor

CAUSE: An infinite pattern was found inside parentheses.
ACTION: Change the repeat pattern.

No Log file available

CAUSE: You have attempted to display the Log File for the current
design. Since you have not previously specified command
logging (i.e., with LOG ON), the file does not exist.

ACTION: Use the LOG ON command to create a Log File.

No Plot file available

CAUSE: You have attempted to display the Plot File for the current
design. Since you have not previously specified plotting
(i.e., with PLOT ON), the file does not exist.

ACTION: Use the PLOT ON command to create a Plot File.

Functional Simulator Messages-7

No Vector file available

CAUSE:

ACTION:

You have attempted to display the Vector File for the current
design, but the Functional Simulator has no record of the file
because it has not been previously specified as the input
Vector File with the VECTOR command. This error may also
occur if you entered your input vectors with the PATTERN
command.

Specify the Vector File with the VECTOR command before
entering the SIM or DISP commands; or, if you entered your
input vectors with the PATTERN command, simply type
PATTERN to display the current list of vector patterns.

No Watch file available

CAUSE:

ACTION:

You have attempted to display the Watch File for the current
design. Since you have not previously specified WATCH
ON, the file does not exist.

Create a watch file with the WATCH ON command.

Node list empty

CAUSE:

ACTION:

The command you entered has an empty node list, so the
command was ignored. This may indicate that pattern
matching failed to yield any matches.

Enter a node list or check your pattern matching string.

Node value list empty

CAUSE:
ACTION:

The node value list of a command was empty, so the
command was ignored.
Define node values that correspond to the node list.

ON or OFF expected

CAUSE:
ACTION:

Messages-8

You have entered a LOG, PLOT, or WATCH command, but
there are no arguments after the command.

Specified ON or OFF. You may also specify a pathname with
the LOG command; with the PLOT and WATCH commands
you may enter a node list and a pathname.

Functional Simulator

Out of memory

CAUSE: The Functional Simulator dynamically allocates memory to
contain items such as breakpoints or groups. This error
indicates that available memory is insufficient to complete
the current processing step. Other resident programs may
be occupying memory, such as RAM-disks, print spoolers,
communication packages, and keyboard enhancers. This
message may also occur if you have used the DOS
Command (<F8>) function and then re-invoked A+PLUS
and FSIM from the temporary DOS environment (a duplicate
copy is read into memory if you reinvoke A+PLUS).

ACTION: Try reducing the number of breakpoints or temporarily
relocate other programs that are resident in memory. If you
have used <F8>, quit FSIM and A+PLUS and type EXIT to
return to the “original” A+PLUS.

Pathname not valid in this context

CAUSE: A pathname, which is indicated by a leading @, was found
when none was expected.

ACTION: Use the @ (at-symbol) only as the first character of a
pathname.

Pattern syntax error

CAUSE: The Functional Simulator found a syntax error in a vector
pattern.
ACTION: If your input vectors are located in a Vector and/or Command

file, check the file for errors. If you entered input vectors
interactively with the PATTERN command, you must
reenter the vector pattern. (Refer also to Legal Logic Level
Characters and Legal Input Vector Format.)

Repeat operator ("*") without parentheses

CAUSE: A vector pattern contains a repeat operator (*) that is not
preceded by parentheses.
ACTION: Ensure that vector patterns to be repeated are enclosed in

parentheses and followed by a repeat operator.
Too many breakpoints

CAUSE: You have set more than 32 breakpoints, which is the
maximum number allowed at any one time.

ACTION: To set more breakpoints, first clear some others with the
CLEAR command.

Functional Simulator Messages-9

Too many groups

CAUSE: You have defined more than 32 groups, which is the
maximum allowed at any one time.

ACTION: Try redefining an existing group (i.e., use an existing group
name).

Too many members in group

CAUSE: You have defined a group containing more than 32 members,
which is the maximum allowed for a single group. The defined
group will contain only the first 32 members specified; the
remainder will be discarded.

ACTION: Define additional groups of up to 32 members.

Too many nodes in Vector file

CAUSE: There are over 256 nodes in the input table of the Vector File.
The Functional Simulator cannot store all the data.
ACTION: Use 256 nodes or less in each Vector File.

Too many vectors in pattern

CAUSE: After repeat factors were applied, the length of a vector
pattern exceeded 10,000 vectors.

ACTION: Reduce the pattern length to less than 10,000 vectors. You
may wish to split the Vector File into two or more files and
use each one in succession.

Unknown node name

CAUSE: The Functional Simulator encountered a node name in a node
list or node value list that it did not recognize.

ACTION: Use the SYMBOLS command to check whether the node
exists, or make sure that you have entered appropriate
pattern matching characters.

Unknown or invalid subnode extension

CAUSE: A subnode extension was applied to a node that was either
unknown or not applicable to that node (e.g., INPUT.CLK,
where INPUT is a dedicated input pin.)

ACTION: See Referencing Subnodes for a description of the notation
used for referencing subnodes.

Messages-10 Functional Simulator

Use only one command per line

CAUSE: One or more characters were found on the command line
after the command terminator (;) during interactive mode
simulation.

ACTION: Enter only one command per line while running the Functional

Simulator in interactive mode.

Vector file must begin with "PATTERN:" or "TABLE:"

CAUSE: The first word in a Vector File must identify the input vector
format with a keyword.

ACTION: Ensure that the PATTERN: or TABLE: keyword is the first
word in a Vector File.

Vector table syntax error

CAUSE: A vector table in a Vector File contains a syntax error.
ACTION: See Legal Input Vector Format for a description of vector
table syntax.

Functional Simulator Messages-11

Warning Messages

Warning: Cycle <#n>, pass <#m>, <node name>.FBK
unstable. Continue?

CAUSE: At cycle n, after m passes through the design, the level on
the specified node did not stabilize. If you are in batch mode,
the Functional Simulator terminates.

ACTION: If you are in interactive mode, you may type Y to see if the
design will stabilize eventually.

Warning: Cycle #, <node name>.CLK - undefined clock
transition.
CAUSE: The clock input for a register had an undefined transition. In

the .RPT file, A+PLUS sometimes indicates that clock pins
need to be connected externally. The Functional Simulator
will display this message if you did not explicitly define clock
vectors for the other pins.

ACTION: Ensure that the clock input is defined. For example, if the
.RPT file contains a message telling you to externally
connect clock pins 1 and 13, you must define vectors for
both pins as follows (assuming a clock vector of
001100110011 ...):

P1 = (0011) * ;
P13 = (0011) * ;

Warning: Duplicate node name <node name> ignored

CAUSE: The Functional Simulator has found the same node name in
two places. This message may occur if <node name> was
truncated to eight characters, and the truncated name is
now identical to another node name.

ACTION: Use node names that contain eight characters or less.

Warning: JEDEC symbol <node name> redefined. Use
<predefined name> instead.

CAUSE: A <node name> in the JEDEC file was the same as a
predefined node name in the Functional Simulator.

ACTION: To reach the node referenced by this symbol, use the
specified predefined node name.

Messages-12 Functional Simulator

Warning: Node name <node name> in JEDEC file ignored -
reserved word

CAUSE: The specified <node name> in the JEDEC file is a
Functional Simulator Reserved Word. The symbol was
ignored.

ACTION: Use the Utilization Report (.RPT file) to find the pin or
macrocell of the <node name>. To reach the node
referenced by this symbol, use the predefined node name
corresponding to the pin or macrocell.

Warning: Node name <node namel> truncated to <node
name2>

CAUSE: The specified <node namels in the JEDEC file was
truncated to <node name2>, i.e., to contain eight
characters, which is the maximum length permitted.

ACTION: Use node names that contain eight characters or less.
Alternatively, you may use the truncated node name during
simulation.

Warning: Vector # applied to <node name> when bus
transceiver state was undefined.

CAUSE: During vector clock #, an input vector was applied to a bus
port pin when the bus transceiver was in an undefined state.

ACTION: Check the Vector file and ensure that you have specified the
correct vectors for all inputs that control the bus. For
additional information, refer to Bus Port Pins in FSIM
Reference.

Warning: Vector # applied to <node name> when bus
transceiver was driving out.

CAUSE: During vector clock #, an input vector was applied to a bus
port pin when the pin was driving out.

ACTION: Check the Vector file and ensure that you have specified the
correct vectors for all inputs that control the bus. For
additional information, refer to Bus Port Pins in FSIM
Reference.

Functional Simulator Messages-13

Warning: Vector # applied to <node name> when output

enabled.
CAUSE: During vector clock #, input vectors were applied to
bidirectional pins when the pin was not tri-stated.
ACTION: No action is required. For additional information, refer to

Bidirectional Pins in FSIM Reference.

Warning: Vector # applied to <node name> when output
enable undefined.

CAUSE: During vector clock #, an input vector was applied to a
bidirectional pin when the Output Enable input of the tri-
stated buffer was undefined.

ACTION: No action is required. For additional information, refer to
Bidirectional Pins in FSIM Reference.

Messages-14 Functional Simulator

FSIM Glossary

Before using the Functional Simulator, you should become familiar with
the following concepts:

breakpoint A breakpoint is a user-defined set of conditions that allow
simulation to be interrupted when the conditions are met. The
breakpoint allows you to execute a list of Functional Simulator
commands when simulation is halted, e.g., to display useful
information at specified times during a simulation session.

convergence Designs containing combinatorial feedback logic may
require the Functional Simulator to make several passes through
the nodes in the array before a stable state can be reached,
because the output of one or more primitives may depend on the
feedback of another primitive (or primitives). The Functional
Simulator does not assume a delay for the propagation of signals;
therefore, the logic levels of feedback nodes are determined by
the current input nodes, and the changes caused by the
feedback nodes must also be allowed to propagate.

Convergence depends on whether or not these cycles of
propagation stop, and the logic levels stabilize. Input cycles are
considered to converge if no change occurs in the nodes of the
array for two consecutive cycles through the array.

Convergence Limit The Functional Simulator limits the number
of cycles through combinatorial logic that are allowed for the
outputs to find a stabilizing point. In batch mode, the simulation
aborts if a stable state is not reached after this number of passes;
in interactive mode, you are asked whether you wish to continue.

Command File ((CMD) A file containing commands that guide
the simulation process. It consists of a list of instructions entered
with a standard text editor, and is used only when the Functional
Simulator is run in batch mode. A Log File (.LOG) may be
renamed as a Command File to repeat an earlier simulation run.

cycle A cycle is a user-defined time reference consisting of an
integral number of vector clocks. The CYCLE command
specifies the number of vector clocks in a cycle. (Refer to Vector
Processing and CYCLE Command.)

Functional Simulator Glossary-1

Glossary-2

Functional Simulator (FSIM) Tests the logical operation of
your A+PLUS design. FSIM uses specified design and part
information to model the operation of an Aitera EPLD before the
design is actually committed to hardware. FSIM can be run in
either interactive or batch mode. It outputs a graphical waveform
description of the simulated design (.WAYV file), a vector table
output file (.TBL), and a log of FSIM commands used for
execution (.LOG file).

group A number of nodes within a design may be grouped so that
they can be referenced, processed, and displayed as a single
unit. Any command issued to a node group (e.g., VECTOR) will
then act on all members of the group. A group may also be
assigned a binary, decimal, hexadecimal, or octal number base
for input and output format. (See the GROUP command
description.)

high-Z (tri-state) Shown in Plot File (WAV) and Virtual Logic
Analyzer output as a Z, it indicates a high-impedance output
signal from a bidirectional pin.

Log File (LOG) Records the commands executed during a
simulation session. This file may be renamed as a Command File
(with the extension .CMD) and used in future simulation runs
with the EXECUTE command, to duplicate all or part of the
current simulation environment. Command logging may be
started and stopped at any time during simulation.

logic level Used to define input and display output of the design
being simulated. Logic levels and their corresponding symbols
legal in the Functional Simulator are as follows:

1 logic high

0 logic low

0-9, A-F binary, octal, hexadecimal, or decimal values for
groups

X undefined

VA high impedance (tri-state)

Functional Simulator

node All wires in a circuit that carry the same signal between
components of a design are called nodes. In other words, nodes
are locations within the EPLD that may attain logical levels.
(Examples of nodes are the Clear (C) input on a RORF primitive
or the feedback (Fbk) from a COIF primitive.) During simulation,
you can symbolically reference the nodes that are connected to
input pins; macrocell outputs or Fbk; buses; and D, T, Preset (P),
C, Clock (CIk), Input Vector (INP)), and Output Enable (Oe)
inputs to 1/O primitives. Buried registers may also be referenced
with these names. (See also Referencing Subnodes.)

node name The name given to a signal (wire) connecting two or
more primitives. A node name may contain up to eight
alphanumeric characters. Case is significant.

pattern matching Used to simplify entry of input vectors during
simulation. User-specified characters are used in conjunction
with wildcard characters, for example, to search for a particular
group of node names or macrocells.

Plot File ((WAY) A Functional Simulator output file that contains a
simple waveform description of the behavior of nodes requested
with the PLOT command. These waveforms indicate High and
Low Levels, High Impedance, Transitions, and Undefined. Plot
Files may be printed at any time during or after a simulation
session.

predefined names To allow complete access to all nodes within
an EPLD, the Functional Simulator automatically creates node
names for each element of BUSTER (EPB1400) buses, pins
(except YCC and GND) and macrocells. Buses are given
predefined names .B0 to .B7; macrocells are given predefined
names .M1 to .M#, where #is a 1- or 2-digit number. Pins are
given predefined names .P1 to .P#, where #is a 1- or 2-digit
number. (EP1800G pin names also include a letter, e.g., .PA10.)
These predefined names may be used in the same manner as
user-defined node names and displayed with the SYMBOLS
command.

predefined vector sequences Four predefined input vector
sequences are available for simulation: the binary counting
sequence, the rotating bit sequence, the gray code sequence,
and the glitch generation sequence.(See Predefined Input
Vector Sequences and the PATTERN command description.

Functional Simulator Glossary-3

Save File (.SAV) An optional file that saves the current simulation
instructions, allowing you to return later to a previously saved
state and thus avoid repetition of simuiation sessions.

subnode An internal node of an I/O primitive (Output Enable,
Clear, Preset, Clock, Feedback, Input Vector, and D or T inputs).
A subnode consists of the subnode name and a subnode
extension. Refer to Referencing Subnodes.

.TBL File See Watch File.

vector A vector specifies the input logic levels for individual nodes
within a design. The Functional Simulator uses vectors to
simulate the behavior of the design. Vectors may be specified in
.VEC files or defined with the PATTERN command.

vector clock The unit of time during which a single vector is
processed.

Vector File (.VEC) Contains vectors that specify the logic levels
of nodes in an EPLD design, which the Functional Simulator
uses to test its logical operation. This file is a “1’s and 0’s file”
describing the input conditions.

vector sequences See predefined vector sequences.

Virtual Logic Analyzer (VLA) Lets you view and analyze all
input and output waveforms of your design in an interactive
manner. The VLA allows you to view and manipulate the
graphical display of the simulation in three independent
windows, and may be invoked at any time during or after a
simulation session.

.WAYV File SeePlot File.

Watch File (.TBL) A Functional Simulator output file that contains a
tabular-format description (in 1’s and 0's) of the state of the
nodes requested by the WATCH command. Watch Files may be
printed at any time during or after a simulation session. (Refer to
the description of the WATCH command in Command
Reference.)

Glossary-4 Functional Simulator

wildcard characters Provide a shorthand notation for pattern
matching of node names during simulation. The asterisk (*)
represents any string of characters; the question mark (?)
represents any single character.

Functional Simulator Glossary-5

Index

Index

This index covers the A+PLUS User Guide, A+PLUS
Reference Guide, and the State Machine Entry and Functional
Simulator options.

Page number prefixes refer to the following sections:

u User Guide

UBE Boolean Equation Entry

USM State Machine Entry

USMM State Machine Converter Messages
UFS Functional Simulator

ULA Virtual Logic Analyzer

UFS)M Functional Simulator Messages

R Reference Guide

RM A+PLUS Messages

RA - RF Appendixes A through F

Index-1

A

A+PLUS
A+PLUS messages
saving in ADP.LOG, R3-10
(see Error messages, Information messages, Warning
messages)
APLUS Menu
detailed description, R3-2—-4
executing DOS commands from, U3-3, R3-4
exiting, U3-3, R3-3
Help function, U3-3, R3-3
invoking design editor from, U3-3, R3-3
invoking Functional Simulator, U3-3, R3-4
invoking LogicMap Il, U3-3, R3-3
invoking, U3-2, R3-2
listing DOS directory from, U3-3, R3-4
deinstallation, U2-13
disk space requirements, U2-9
hardware, (see also Logic Programmer)
hardware installation, (see LogicMap Il manual)
hardware requirements, U1-3
memory requirements, U1-3
overview, U1-2
software installation, (see Installation)
updates, U2-2, RE-4
Active Low signals
alternate notation, UBE-31
predefined active low signals, UBE-31
recommended notation, UBE-31
ADF-to-LEF translation, (see Altera Design Processor)
ADLIB, R1-4
ADLIB distribution diskette, U2-3
part field of Title Block, R1-4
ADP, (see Altera Design Processor)
ADP.LOG, U1-9, R3-10
Algorithmic State Machine chart, USM-8
Altera Design File, U1-6, R2-2
comments
BNF syntax, R2-3
delimiters, R2-3
legal characters, R2-3
Declarations Section, UBE-17
BNF syntax, R2-6
Inputs Section, UBE-19, R2-6

Index-2 A+PLUS User Guide

Index

legal pin name characters, UBE-19
restrictions, UBE-19
Options Section

legal and default option values, UBE-18, R2-6

(see also Turbo-Bit, Security Bit)
Outputs Section, UBE-20, R2-6

bidirectional pins, UBE-20

buried register outputs, UBE-20
Part Section, R2-6

automatic part selection, UBE-18, R2-6, R2-7

with MACRO and ADLIB, R2-6
End Statement, UBE-34, R2-10
Equations Section, UBE-32, R2-9
BNF syntax, R2-9
full BNF syntax, R2-11-12
functions, R2-2
Header Section, UBE-17, R2-4
BNF syntax, R2-5
character count in fields, R2-5
legal characters, R2-4
keywords, R2-3
white space before, R2-3
Network Section, UBE-20
active low signals
conventions, UBE-31
predefined, UBE-31
BNF syntax, R2-8
buried register outputs, UBE-23
clocking, (see Clock signal)
inputs to Bus I/O primitives, UBE-21
inputs to 1/O primitives, UBE-21
legal node name characters, UBE-30
mnemonic primitive syntax, UBE-24
pin and node naming conventions, UBE-27-29
submitting to ADP, U3-5, R3-7
white space, R2-3

Altera Design Processor

ADP Menu
default processing options, U3-4, R3-5
detailed description, R3-5-9
Execute function, U3-6, R3-9
exiting from, U3-5, R3-6
File Name(s) function, U3-5, R3-7
Help function, U3-5, R3-6
Input Format function, U3-5, R3-7

Index-3

Altera Design Processor — continued

Inversion Control function, U1-11, U3-5, R3-8
invoking, U3-3, U3-4, R3-3, R3-5
LEF Analyzer function, U3-5, R3-8
Minimizer function, U3-5, R3-7
returning to APLUS Menu, U3-5
Assembler
Assembler module functions, U1-12
combining multiple files, R3-7
default menu options, U3-4, R3-5
executing, U3-6, AR3-9
Expander
Expander module functions, U1-10
Fitter, R4-1-2
Fitter module functions, U1-11, R4-1
Flattener
Flattener module functions, U1-9
Inversion Control function, U1-11, U3-5, R3-8
invoking from DOS (stand-alone mode), A3-11, R3-12
LEF Analyzer
LEF Analyzer module functions, U1-11, R3-8, RB-3
output file contents, R3-8, U1-11
Minimizer
Minimizer module functions, U1-11, U3-5, R3-7
summary of automatic functions, R3-10
Translator
ADF-to-LEF translation, RB-1
automatic part selection, U1-10
Translator module functions, U1-10, RB-1
Altera Primitive Library, U1-5
foldout pages, RF-3-5
(see also Primitives)
Altera Programmable Logic User System, (see A+PLUS)
ALTERA.SYM, R3-13
AND operators, (see Boolean equations)
AND?2 through AND12, R1-9
APLUS Menu, (see A+PLUS)
Ascii file-transfer protocol, RE-10
ASM chart, USM-8
asterisks
as repeat factors in FSIM vector pattems, UFS-13
in Header Section, USM-47, R2-4
in JEDEC files, RD-2

Index-4 A+PLUS User Guide

in Macrocell Interconnection Cross Reference, R4-6
in pin names, UBE-19, USM-49, R2-7
(see also pattern matching)

asynchronous clocks, (see Clock signal)
asynchronous clock buffer, (see CLKB)

AUTO, (see automatic part selection)

AUTOEXEC.BAK, U2-12

AUTOEXEC.BAT, U2-12

automatic part selection, U1-10, UBE-18, USM-11, USM-48, R2-6,
R3-10
restrictions, UBE-18, USM-11, USM-48, R2-7

backups
of distribution diskettes, U2-8
Backus-Naur Form
notation rules, RC-1
(see also BNF syntax)
BAND primitives, R1-14
BBUF, R1-10
BEGIN command, (see FSIM commands)
BEVDIS sample design, UBE-5-14, UFS-17
BEVDIS.LEF, RB-4
BEVDIS.RPT, R4-8
bidirectional pins, UBE-20
simulating in FSIM, UFS-49
BIN, (see FSIM commands: GROUP)
binary base, (see Functional Simulator: groups: number bases)
binary counting sequence, (see Functional Simulator)
blank spaces, (see white space)
BNAND primitives, R1-16
BNF syntax
for Altera Design File, R2-11-12
for State Machine File, USM-58—-60
BNOR primitives, R1-9
Boolean Equation Entry, U1-8
additional guidelines, UBE-35
functional description, UBE-3
general requirements, UBE-2
sample session, UBE-5-14
submitting ADFs to ADP, U3-5, R3-7
Boolean equations
created during ADF-to-LEF translation, RB-1
expansion during design processing, U1-10

Index Index-5

Boolean equations — continued

permitted operators, UBE-32

using intermediate equations, UBE-33

(see also Altera Design File: Equations Section)
Boolean expressions

in schematic drawings,USM-51

in State Machine Files, USM-54
BOR primitives, R1-13
BREAK command, (see FSIM commands)
breakpoints, (see Functional Simulator)
bubble gates, (see BAND, BNAND, BNOR, and BOR)
Buried Registers Section, (see Utilization Report)
buried macrocells

assigning to pins, UBE-23

EPLDs supporting, UBE-23
buried pins, R4-6
buried registers, R4-3

buried register outputs, UBE-20, UBE-23
Bus I/O primitives, R1-46-59

BUSX, UBE-21, R1-48

general rules, R1-46

LBUSI, UBE-21, R1-50

LBUSO, UBE-21, R1-52

LINPS, UBE-21, R1-54

naming conventions, UBE-28

RBUSI, UBE-21, R1-56

RINPS, UBE-21, R1-58
bus port pins

simulating in FSIM, UFS-50

using predefined node names in FSIM, UFS-51
Bus transceiver, (see BUSX)
BUSTER (EPB1400)

block diagram, RA-31

buried macrocells, UBE-23

clocking diagrams, RA-26

combining internal bus nodes in VLA, ULA-23

dual I/O feedback, UBE-22

grouping internal bus nodes in FSIM, UFS-70

inputs to bus primitives, UBE-21

macrocell group table, RA-30

part description, RA-24

number of bus primitives allowed, R1-46

restrictions with LogicMap Il, U1-14

Index-6 A+PLUS User Guide

Index

signal reevaluation in FSIM vector processing, UFS-42
simulating buses, (see also Virtual Logic Analyzer)

BUSX, UBE-21, R1-46, 48
setting control signals in FSIM, UFS-50

Cc

carriage returns, (see white space)
CASE statements, (see transitions)
characters
legal characters for
active low signals, UBE-31
node names, UBE-30
comments, R2-3
FSIM Vector Files, UFS-12
Header Section, USM-47, R2-4
JEDEC files, RD-4
pin names, UBE-30, USM-49
state machine clear name, USM-51
state machine clock name, USM-51
state machine names, USM-42
state names, USM-52
state variable names, USM-52, USM-53
state variable values, USM-52
truth tables, USM-56
reserved words in FSIM, UFS-53
CLEAR command, (see FSIM commands)
Clear signal, UBE-33,USM-13
effects on vector processing in FSIM, UFS-42
inputs to primitives, UBE-21
in state machines, USM-40, USM-51
in Utilization Report, R4-5
legal characters, USM-51
Clear subsection, (see State Machine File)
CLKB, R1-11
(see also Clock signal: asynchronous)
Clock signal, UBE-33
asynchronous, USM-13
logic-driven, UBE-22, USM-40, USM-51
pin-driven, UBE-21
clock groups in Utilization Report, R4-5
effects on vector processing in FSIM, UFS-42
inputs to bus I/O primitives, UBE-21
legal characters, USM-51

simulating designs with externally connected pins, UFS-51

Index-7

Index-8

Clock signal — continued

synchronous, UBE-21, USM-13, USM-40, USM-51
Clock subsection, (see State Machine File)
clocking diagrams, (see Appendix A)
CMD file, (see Functional Simulator: Command File)
CMP files, (see P-CAD)
COCF, R1-24
COIF, UBE-21, R1-25
COLF, R1-26
combinatorial feedback, UBE-33, UBE-35
combining files
entering filenames at ADP menu prompts, R3-7
with different formats, R3-11
comments
in Logic Equation File, AB-3
(see also Altera Design File, State Machine File)
conditional outputs, (see Output: state machine outputs)
conditional transitions, (see transitions)
CONF, R1-27
used for reserving unused pins R4-3
CONFIG.BAK, U2-12
CONFIG.SYS, U2-12
CONTINUE command, (see FSIM commands)
convergence limit, (see Functional Simulator)
converters, (see State Machine Entry and FutureNet DASH)
copy protection, U2-8
CORF, R1-28
Crosstalk, RE-10
CYCLE command, (see FSIM commands)

D

DASH, (see FutureNet DASH)
data buffer, (see Virtual Logic Analyzer)
De Morgan’s inversion, (see Altera Design Processor: Inversion
Control)
DEC, (see FSIM commands: GROUP)
decimal base, (see Functional Simulator: groups: number bases)
Declarations Section, (see Altera Design File, State Machine File)
Deinstallation, U2-13
De-Installation Menu, U2-13
DESCRIBE command, (see FSIM commands)

A+PLUS User Guide

design entry methods, (see State Machine Entry, LogiCaps, FutureNet
DASH, P-CAD, Netlist Entry, Boolean Equation Entry)
DIP packages, RA-2
disk drives
360 Kbyte vs. 1.2 Mbyte, U2-9
disk space
required for A+PLUS, U2-9
DISPLAY command, (see FSIM commands)
distribution diskettes
backups, U2-8
for installation, U2-3
DOS
executing DOS commands
from A+PLUS, U3-3, R3-4
from FSIM, UFS-66
invoking ADP from (stand-alone mode), R3-12
invoking FCV from (stand-alone mode), R3-12
invoking LogiCaps from (stand-alone mode), R3-13
invoking LogicMap Il from (stand-alone mode), R3-14
invoking State Machine Converter from (stand-alone mode),
R3-14
invoking FSIM from, R3-12
batch mode, UFS-38
interactive mode, UFS-19
listing DOS files while in A+PLUS, U3-3, R3-4
recommended version, U2-3
downloading files, (see files)
dual I/O feedback, UBE-20, UBE-22, R4-4
naming conventions, UBE-27

E

ECF, (see LogicMap 1l)
ECHO command, (see FSIM commands)
editors

FutureNet DASH, U1-7

LogiCaps, U1-7
Electronic Application Briefs, (see Appendix E)
Electronic Application Utilities, (see Appendix E)
Electronic Design Support Service, RE-1
End Statement, (see Altera Design File, State Machine File)
ENDCASE, (see transitions)
EP310

block diagram, RA-6

clocking diagrams, RA-4

Index Index-9

Index-10

EP310 — continued

macrocell group table, RA-5
part description, RA-3

EP320
block diagram, RA-7
clocking diagrams, RA-4
macrocell group table, RA-5
part description, RA-3
EP600/610
block diagram, RA-11
clocking diagrams, RA-9
macrocell group table, RA-10
part description, RA-8
EP900/910
block diagram, RA-15
clocking diagrams, RA-13
macrocell group table, RA-14
part description, RA-12
EP1210
block diagram, RA-23
clocking diagrams, RA-17
macrocell group table, RA-21
part description, RA-16
EP1800
block diagram, RA-38
buried macrocells, UBE-23
clocking diagrams, RA-34
dual I/0 feedback, UBE-22
macrocell group table, RA-36
part description, RA-33
EPB1400, (see BUSTER)
EPLD.SYS, U2-10
EPLDs
general information, RA-2
package configurations, RA-2
power-up state, USM-41
programming and verifying, (see LogicMap Il manual)
simulating, (see Functional Simulator)EPLDs
Equation primitives, R1-20-22
EQNI1, R1-21
EQNS, R1-22
Equations Section, (see also Altera Design File or State Machine File)

A+PLUS User Guide

equations, (see Boolean equations)
Error messages
A+PLUS, R3-10
Functional Simulator, U(FS)M-2
State Machine Converter, U(SM)M-1
EXAMPLE1 sample design, USM-7-19
EXAMPLE2 sample design, USM-20-28
EXAMPLE3 sample design, USM-29-39
exclamation point
after pin numbers, R4-4
after primitive names, R4-4
exclusive NOR, (see XNOR)
exclusive OR, (see XOR)
EXECUTE command, (see FSIM commands)
executing the ADP, U3-6, R3-9
exiting
from ADP Menu, U3-5, R3-6
from APLUS Menu, U3-3, R3-3
from Functional Simulator, UFS-77
from temporary DOS environment, U3-3, R3-4
from VLA, ULA-24
Extended Software Warranty, RE-3

F

FCV, (see FutureNet DASH)
Feedback
combinatorial, UBE-33, UBE-35
(see also COCF, NOCF, ROCF)
dual I/0, R4-4
EPLDs supporting, UBE-22
feedback group in Utilization Report, R4-5
I/O, (see COIF, ROIF, TOIF)
JK, (see JOJF, NOJF)
latched, (see COLF, ROLF)
local, R4-6
naming conventions, UBE-27
registered, (see CORF, NORF, RORF)
SR, (see NOSF, SOSF)
T, (see NOTF, TOTF)
Fido, (see Appendix E)
filename extensions
specifying in ADP Menu, U3-5, R3-7

Index Index-11

files
analyzing, U1-11, U3-5, R3-8
combining, RA3-7, R3-11
converting PIN files into ADFs, U1-7, R3-12
converting SMFs into ADFs, U1-7, R3-14
downloading from Altera, RE-12
editing from A+PLUS, U3-3, R3-3
file-transfer protocols, RE-10
minimizing, U1-11, R3-7
Netlist format, U1-6
partitioning large files, A3-9
submitting to ADP, U3-5, R3-7
uploading to Altera, RE-10
Fitter, (see Altera Design Processor, Utilization Report)
FNET, (see FutureNet DASH)
FORCE command, (see FSIM commands)
FSIM, (see Functional Simulator)
FSIM commands
BEGIN, UFS-58
BREAK, UFS-59
effect of cycle length, UFS-45
nested commands, UFS-27
specifying cycle value, UFS-56
use of semicolon, UFS-54
CLEAR, UFS-61
command format, UFS-55, UFS-56
node list, UFS-55
node value list, UFS-55
pathnames, UFS-56
CONTINUE, UFS-62
CYCLE, UFS-42, UFS-63
defining cycle value, UFS-26
effect on predefined vector sequences, UFS-47
expanding signal lengths, UFS-44, UFS-45
effect on FSIM prompt, UFS-23
DESCRIBE, UFS-64
DISPLAY, UFS-65
DOS, UFS-66
ECHO, UFS-67
EXECUTE, UFS-68
FORCE, UFS-69
usage with BREAK, UFS-69
general description, UFS-8-10

Index-12 A+PLUS User Guide

FSIM commands - continued

GROUP, UFS-70
HEX, DEC, OCT and BIN number bases, UFS-70
predefined node names, UFS-51
HELP, UFS-71
INIT, UFS-72
LOG, UFS-73
PATTERN, UFS-74
nested patterns, UFS-13
pattern format, UFS-12
patterns for bidirectional pins, UFS-49
patterns for bus port pins, UFS-50
patterns for externally connected clock pins, UFS-51
predefined vector sequences, UFS-46-47
repeat factor, UFS-13
PLOT, UFS-75
use with VLA, ULA-3
restrictions, UFS-70
QUIT, UFS-77
RESTORE, UFS-78
SAVE, UFS-79
SIMULATE, UFS-80
effect of cycle length, UFS-45
entering cycle values, UFS-29, UFS-56
STATUS, UFS-81
SYMBOLS, UFS-82
displaying predefined node names, UFS-51
pattern matching, UFS-24
VECTOR, UFS-83
with groups of nodes, UFS-12
VIEW, UFS-84
(see also Virtual Logic Analyzer)
WATCH, UFS-85
GROUP
use with VECTOR command, UFS-12
PATTERN
Functional Simulator, U1-13
(see also FSIM Commands, Virtual Logic Analyzer)
batch mode, UFS-37
command termination, UFS-54, UFS-56
line numbers in error messages, U(FS)M-1
usage with VLA, ULA-4
bidirectional pins, UFS-49

Index Index-13

Index-14

INP node name extension, UFS-49
breakpoints, UFS-9, UFS-27
ciearing, UFS-61
highlighting in VLA, ULA-22
setting, UFS-59
use of FORCE command, UFS-69
bus port pins, UFS-50
Command File, UFS-3, UFS-14
executing, UFS-68
command termination, UFS-54, UFS-56
convergence limit, UFS-42
cycle value, UFS-29, UFS-56
relative vs absolute, UFS-56
setting, UFS-63
specifying, UFS-80
displaying files, UFS-65
displaying simulation status, UFS-81
entering vector patterns, UFS-74
Error messages, U(FS)M-2
exiting, UFS-77
expanding signal lengths, UFS-43
externally connected clock pins, UFS-51
FSIM distribution diskette, U2-4
functional description, UFS-3-5
groups
most and least significant bits, UFS-70
number bases, UFS-12, UFS-14, UFS-70
high impedance, UFS-12
use when simulating bidirectional pins, UFS-49
use when simulating bus port pins, UFS-50
interactive mode, UFS-19
command termination, UFS-54, UFS-56
invoking
from APLUS Menu, U3-3, R3-4, UFS-19, UFS-38
from DOS (stand-alone mode), R3-12, UFS-19, UFS-38
invoking Virtual Logic Analyzer, UFS-84
Log File, UFS-3, UFS-15
creating, UFS-73
nested commands, UFS-27
nodes
displaying node names, UFS-82
grouping, UFS-70
internal subnodes of /O primitives, UFS-52
node list, UFS-55
node value list, UFS-55

A+PLUS User Guide

Index

Functional Simulator: nodes - continued

predefined node names
buses, UFS-51
macrocells, UFS-51
pins, UFS-51
pathnames, UFS-56
pattern matching, UFS-24, UFS-85
Plot File, UFS-3, UFS-15
creating, UFS-75
resetting, UFS-58
usage with VLA, ULA-3
prompt
effect of CYCLE command, UFS-23
format, UFS-23
predefined vector sequences
binary counting, UFS-46
effect of cycle value, UFS-47
glitch generator, UFS-47
gray code, UFS-47
rotating bit, UFS-46
propagation of undefined logic levels, UFS-48
reserved words, UFS-53
restoring previous simulation environment, UFS-16, UFS-78
resuming simulation, UFS-62
sample sessions
batch mode, UFS-37
interactive mode, UFS-17
Save File, UFS-16
creating, UFS-79
restoring, UFS-78
screen displays, UFS-30
simulation cover percentage, UFS-16, UFS-76, UFS-81,
UFS-85
vectors
specifying input vectors, UFS-83
vector clock
definition, UFS-42
vector cycles, UFS-10
vector patterns
for bidirectional pins, UFS-49
for bus port pins, UFS-50
for externally connected clock pins, UFS-51
repeat factor, UFS-13

Index-15

predefined vector sequences, UFS-46
Vector File, UFS-3, UFS-11
comments in, UFS-21
expanding signal lengths, UFS-43
legal logic level characters, UFS-12
nested patterns, UFS-13
number bases, UFS-14
overriding vectors in, UFS-13, UFS-69
PATTERN format, UFS-12
switching files, UFS-11
TABLE format, UFS-13
usage with groups of nodes, UFS-12
vector processing sequence, UFS-42
Warning messages, U(FS)M-12
Watch File, UFS-3, UFS-15
creating, UFS-85
FutureNet DASH, U1-7
primitives, R1-2
FNET distribution diskette, U2-4
invoking from APLUS Menu, U3-3, R3-3
Pinlist Converter, R2-2
invoking from DOS (stand-alone mode), R3-11, R3-12
submitting PIN files to ADP, U3-5, R3-7

G

GND (ground), R1-12

glitch generator sequence, (see Functional Simulator)
gray code sequence, (see Functional Simulator)
GROUP command, (see FSIM commands)

H

hard disk

installing A+PLUS software on, U2-9
hardware installation, (see LogicMap |l manual)
Header Section

of Logic Equation File, RB-3

of Utilization Report, R4-3

(see also Altera Design File, State Machine File)
help

invoking in ADP Menu, R3-6

invoking in APLUS Menu, U3-3, R3-3

invoking in Functional Simulator, UFS-71

invoking in Virtual Logic Analyzer, ULA-18

Index-16 A+PLUS User Guide

HEX, (see FSIM commands: GROUP)
hexadecimal base, (see Functional Simulator: groups: number bases)
high impedance, UFS-12

use when simulating bidirectional pins, UFS-49, UFS-50

(see also Virtual Logic Analyzer)

I/O primitives, R1-23, R1-45

ADF-to-LEF translation of, RB-3

COCF, R1-24

COIF, R1-25

COLF, R1-26

CONF, R1-27

CORF, R1-28

internal subnodes of, UFS-52

JOJF, R1-29

JONF, R1-30

mnemonic names for, R1-23

NOCF, R1-31

NOJF, R1-32

NORF, R1-33

NOSF, R1-34

NOTF, R1-35

pin and node naming conventions, UBE-27

ROCF, R1-36

ROIF, R1-37

ROLF, R1-38

RONF, R1-39

RORF, R1-40

SONF, R1-41

SOSF, R1-42

TOIF , R1-43

TONF, R1-44

TOTF, R1-45
IF-THEN statements, (see transitions: conditional)
Information messages

A+PLUS, R3-10

State Machine Converter, USM)M-11
INITIALIZE command, (see FSIM commands)
INP, R1-6
INP pin name extension (see Functional Simulator: bidirectional pins)
Input primitives

INP, R1-6

LINP, R1-7

Index Index-17

pin and node naming conventions, UBE-27
input format

specifying in ADP Menu, U3-5, R3-7
input vectors, (see Functional Simulator)
Inputs Section, (see Altera Design File, State Machine File)
Installation

AUTOEXEC.BAT file, U2-12

CONFIG.SYS file, U2-12

distribution diskettes, U2-3

EPLD.SYS file, U2-10

hardware, (see LogicMap Il manual)

installation checklist, U2-2

Installation Menu, U2-11

installation procedure, U2-9

Main Menu, U2-10

making backup diskettes, U2-8

READ.ME file, U2-2

recommended DOS version, U2-3
intermediate equations, (see Boolean equations)
intermediate LEFs, (see Logic Equation File)
internal subnodes, (see nodes)
Inversion control (see Altera Design Processor: Inversion Control)

J

J-lead packages, RA-2

JEDEC File, UF3-11
character substitution in, UBE-19, R2-7
description of format, RD-1
editing and viewing, (see LogicMap Il)
legal characters in, RD-4

JOJF, R1-29

JONF, R1-30

K
Kermit, RE-10
Keyword state variable format, USM-53

keywords, (see Altera Design File, State Machine File, Functional
Simulator)

Index-18 A+PLUS User Guide

Index

L

Latch Enable signal, UBE-33

latches
cross-coupled, UBE-33
propagation of undefined logic levels, UFS-48
(see also Utilization Report)

Latches Section, (see Utilization Report)

LBUSI, R1-46, R1-50

LBUSO, R1-46, R1-52

least significant bit, UFS-70

LEF, (see Logic Equation File, Altera Design Processor: LEF Analyzer)

LEF Analyzer, (see Altera Design Processor)

legal characters, (see characters)

line feeds, (see white space)

LINP, R1-7

LINPS, R1-46, R1-54

local feedback, R4-6

LOG file, (see Functional Simulator: Log File)

LOGFILE command, (see FSIM commands)

logging on
to Fido, RE-3

Logic Analyzer, (see Logic Equation File and Altera Design Processor:
LEF Analyzer)

Logic Equation File, U1-10, AB-1
ADF-to-LEF translation, U1-10
analyzing, U1-11, U3-5, R3-8
comments in, AB-3
converting, U1-11
intermediate, U1-10, U1-11, R3-8
LEF Header Section, RB-3

logic inversion, (see Altera Design Processor: Inversion Control)

logic levels
legal characters, UFS-12

Logic primitives, R1-8-19
ADF-to-LEF translation, RB-1
AND2 through ANDI12, R1-9
BAND2 through BAND12, R1-14
BBUF, R1-10
BNAND?2 through BNAND12, R1-16
BNOR2 through BNOR12, R1-9
BOR2 through BOR12, R1-13
CLKB, R1-11
GND, R1-12
NAND2 through NAND12, R1-13

Index-19

Logic primitives — continued

NOR2 through NOR12, R1-14
NOT, R1-15
OR2 through ORI12, R1-16
VCC, R1-17
XNOR, R1-18
XOR, R1-19
Logic Programmer
programming card, U1-3, R3-3
default address, U2-11
(see also LogicMap Il manual)
programming unit, U1-2, U1-14
logic reduction, (see Altera Design Processor: Minimizer)
LogiCaps, U1-7
invoking from APLUS Menu, U3-3, R3-3
invoking from DOS (stand-alone mode), R3-13
LOGICAPS distribution diskette, U2-3
Symbol Numbers command, R1-2
UTILITIES distribution diskette, U2-3
LOGICAPS.CFG, R3-14
LogicMap I, U1-14
ECF distribution diskette, U2-3
invoking from APLUS Menu, U3-3, R3-3
invoking from DOS (stand-alone mode), R3-14
LOGICMAP distribution diskette, U2-3
toggling Turbo-Bit and Security Bit, UBE-35, USM-41, R2-6

M

Machine Section, (see State Machine File)
Macrocells, (see also Utilization Report)
buried, UBE-23, R4-6
clear signal, R4-5
clock signal, R4-5
feedback group, R4-5
macrocell group assignments, (see Appendix A)
Macrocell Interconnection Cross Reference, (see Utilization
Report)
output enable signal, R4-5
predefined node names in FSIM, UFS-51
preset signal, R4-5
MacroFunctions, R3-10
flattening, U1-9, R3-10

Index-20 A+PLUS User Guide

Index

MACROLIB distribution diskette, U2-3
MACROLIB-TTL distribution diskette, U2-3
Standard, U1-5
TTL, U1-5
memory
CONFIG.SYS file requirements, U2-12
increasing for larger designs, R3-11
potential problems, R3-4
requirements for running A+PLUS, U1-3
Minimizer, (see Altera Design Processor)
Minitel, RE-10
mnemonic names
for pins and nodes, UBE-24
for I/O primitives, R1-23
modem
Fido communication parameters, RE-2
link to Altera, RE-1
Modem?7, RE-10
most significant bit, UFS-70
multiple files
combining, R3-7

N

N.C. (see pins: with no internal connections)
naming conventions (see Altera Design File: Network Section)
NAND?2 through NAND12, R1-13
nested patterns, (see Functional Simulator)
Netlist entry method, U1-8, R2-13
submitting ADFs to ADP, U3-5, R3-7
Network Section, (see Altera Design File or State Machine File)
NOCF, R1-31
use with asynchronous clocking, UBE-22
nodes
displaying in FSIM, UFS-82
grouping in FSIM, UFS-12, UFS-70
internal subnodes of I/O primitives, UFS-52
propagation of undefined node levels, UFS-48
referencing predefined node names in FSIM, UFS-51
use of .INP node name extension in FSIM, UFS-49
legal node name characters, UBE-30
mnemonic node naming conventions, UBE-27-28
(see also FSIM commands: BREAK; Virtual Logic Analyzer)
NOJF, R1-32
NOR?2 through NOR12, R1-14

Index-21

NORF, R1-33

NOSF, R1-34

NOT, Ri-15

NOT operators, (see Boolean equations)
NOTF, R1-35

(o)

OCT, (see FSIM commands: GROUP)
octal base, (see Functional Simulator: groups: number bases)
operators, (see Boolean equations)
Options Section, (see Altera Design File, State Machine File)
OR operators, (see Boolean equations)
OR2 through OR12, R1-16
Output
buried, UBE-20, UBE-23
Combinatorial, (see COCF, COIF, COLF, CONF, CORF)
JK, (see JOJF, JONF)
Registered, (see ROCF, ROIF, ROLF, RONF, RORF)
SR, (see SONF, SOSF)
state machine outputs, USM-9
as inputs to other state machines, USM-40
conditional output syntax, USM-55
restrictions, USM-41
unconditional output syntax, USM-55
use of auxiliary variables, USM-41
T, (see TOIF, TONF, TOTF)
Output Enable signal, UBE-33
effects on vector processing in FSIM, UFS-42
in Utilization Report, R4-5
inputs to primitives, UBE-21
Output Latch Enable signal, UBE-33
inputs to bus primitives, UBE-21
Outputs Section, (see Altera Design File, State Machine File, Utilization
Report)
difference from Outputs subsection in SMFs, USM-51
Outputs subsection, (see State Machine File)

P

P-CAD, U1-6
invoking from APLUS Menu, U3-3, R3-3
node name for GND, R1-12
node name for VCC, R1-17
submitting CMP files to ADP, U3-5, R3-7

Index-22 A+PLUS User Guide

Index

Part Section

automatic part selection, R2-6
(see also Altera Design File, State Machine File)

Part Utilization Section, (see Utilization Report)
partitioning files, R3-9
pathname

specifying in FSIM, UFS-56

PATTERN command, (see FSIM commands)
pattern matching, U3-3, R3-4

in Functional Simulator, UFS-24, UFS-85
with input filenames, R3-7

PC-CAPS, (see P-CAD)
periods

in pin names, UBE-19, USM-49, R2-7

PIN files, (see FutureNet DASH)
Pin-grid array packages, RA-2
Pin List Converter, (see FutureNet DASH)

pins

bidirectional, UBE-20, UBE-22
simulating in FSIM, UFS-49
buried, R4-6
bus port pins
simulating in FSIM, UFS-50
dedicated input pins
/CRS, UBE-31
/CWS, UBE-31
in Macrocell Interconnection Cross Reference, R4-6
pin assignments
in Utilization Report, R4-1, R4-4
to buried macrocells, UBE-23
pin names
asterisks in, UBE-19, USM-49, R2-7
legal characters, UBE-30, USM-49
mnemonic names, UBE-24
naming conventions, UBE-27
periods in, UBE-19, USM-49, R2-7
tildes (~) in, UBE-19, USM-49, R2-7
pin numbers
notation used in macrocell group tables, RA-2
predefined node names in FSIM, UFS-51
reserved, R4-3
simulating externally connected clock pins, UFS-51
unused, R4-3
using /0 pins as input pins, UBE-20
with no internal connections (N.C.), R4-3

Index-23

Index-24

PLCAD-SUPREME, U2-5
PLCAD4, U2-6
PLDS2, U2-7
PLOT command, (see FSIM commands)
Positional state variable format, USM-52
power-up state, USM-20
predefined active low signals, UBE-31
predefined node names, (see Functional Simulator)
predefined vector sequences, (see Functional Simulator)
Preset signal, UBE-33
effects on vector processing in FSIM, UFS-42
in EP310’s, RA-3
inputs to primitives, UBE-21
in Utilization Report, R4-5
Primitives
ADF-to-LEF translation, RB-1-3
bubble gates, (see BAND, BNAND, BNOR, and BOR)
bus /O primitives, R1-46-59
equation primitives, R1-20-22
format description , R1-2
foldout pages, RF-3-5
followed by exclamation points, R4-4
1/0 primitives, R1-23, R1-45
internal subnodes of, UFS-52
input primitives, R1-5-7
logic primitives, R1-2, R1-8-19
minimization of, U1-11
mnemonic names for, R1-23
multiple inputs, R1-8
node naming conventions, UBE-27
Title Block, R1-3
promotion of, R4-4
syntax with mnemonic pin and node names, UBE-24
(see also Altera Primitive Library)
printable characters, USM-46, USM-47, R2-4
product terms
sharing, UBE-35
(see also Utilization Report)
promotion of primitives, R3-8

Q
question marks

in Macrocell Interconnection Cross Reference, R4-6
(see also pattern matching)

A+PLUS User Guide

R

RAM, (see memory)
RANGE, (see FSIM commands: BREAK)
RBUSI, R1-46, R1-56
Read Enable signal, UBE-33
Read Strobe signal
active low logic, UBE-31
effects on vector processing in FSIM, UFS-42
inputs to bus primitives, UBE-21
READ.ME file, U2-2
Registers
buried, R4-3
repeat factor
in FSIM vector patterns, UFS-13
repeating processing, R3-9
reserved pins, R4-3
reserved words, (see Functional Simulator)
resources, (see Utilization Report)
RESTORE command, (see FSIM commands)
RINPS8, R1-46, R1-58
ROCF, R1-36
ROIF, UBE-20, R1-37
ROLF, R1-38
RONF, R1-39
RORF, R1-40
rotating bit, (see Functional Simulator)

S

schematic design entry, (see LogiCaps, FutureNet DASH, P-CAD)
SDF, U1-9, R3-10
Security Bit, UBE-35, USM-41, USM-42, R1-4
default value, UBE-18, R2-6, RB-3
in JEDEC files, RD-3
toggling with LogicMap Il, UBE-35, USM-41, R2-6
semicolon (;)
use in FSIM commands, UFS-54
in nested BREAK commands, UFS-27
serial numbers, U2-2
SMV, (see State Machine Entry)
Software Warranty, (see Extended Software Warranty)
software installation, (see Installation)
software update information, RE-4
SONF, R1-41

Index Index-25

SOSF, R1-42
stand-alone mode, R3-11-14
State Machine Entry, U1-7
design guidelines, USM-40-42
functional description, USM-3
general requirements, USM-2
sample sessions
EXAMPLE1, USM-7-19
EXAMPLE2, USM-20-28
EXAMPLE3, USM-29-39
suggested design steps, USM-5
SMV distribution diskette, U2-3
State Machine Converter, R2-2
invoking from DOS (stand-alone mode), R3-11, R3-14
State Machine File
comments
BNF syntax, USM-46
delimiters, USM-46
legal characters, USM-46
Declarations Section, USM-47
legal pin name characters, USM-49
Options Section, USM-48
legal and default option values, USM-48
(see also Turbo-Bit, Security Bit)
Outputs Section, USM-49
multiple state machines, USM-40
use of state variables, USM-40
Part Section, USM-48
automatic part selection, USM-48
End Statement, USM-57
Equations Section, USM-50
guidelines, (see Altera Design File)
full BNF syntax, USM-58-60
Header Section, USM-47
character count in fields, USM-47
legal characters, USM-47
keywords USM-46
white space before USM-46;
Machine Section, USM-50
Clear subsection, USM-51
legal clear name characters, USM-51
(see also Clear signal)
Clock subsection, USM-51
legal clock name characters, USM-51
(see also Clock signal)

Index-26 A+PLUS User Guide

legal state machine name characters, USM-42, USM-51
Outputs subsection, USM-41
restrictions, USM-41
States subsection, USM-52
Keyword state variable format, USM-53
legal state name characters, USM-52
legal state variable name characters, USM-52
legal state variable values, USM-52
Positional state variable format, USM-52
Transitions and Outputs subsections, USM-53
CASE statement transitions, USM-55
conditional outputs, USM-55
conditional transitions, USM-54
unconditional outputs, USM-55
unconditional transitions, USM-54
Network Section, USM-50
guidelines, (see Altera Design File)
submitting to ADP, U3-5, R3-7
Truth Table Section, USM-56
definition of, USM-10
legal truth table values, USM-56
white space, USM-46
state diagram, USM-7, USM-14, USM-20
state label, USM-60
state machine names
legal characters, USM-42
state names
restrictions, USM-40
state variables
definition of, USM-9
Keyword state variable format, USM-53
legal characters, USM-53
Positional state variable format, USM-52
restrictions, USM-13, USM-14
state variable assignments, (see state variable values)
state variable names, USM-52
in SMF Outputs Section, USM-40
legal characters, USM-52
restrictions, USM-40, USM-41
state variable values, USM-52
legal characters, USM-52
states, USM-9
power-up state, USM-20
undefined, USM-20, USM-41
States subsection, (see State Machine File)

Index Index-27

Index-28

stepper motor controller, (see EXAMPLE?2)
subnodes, (see nodes)
suggestions

sending via Fido, RE-15
SYMBOLS command, (see FSIM commands)
synchronous clocks, (see Clock signal)

T

T_TAB:, (see State Machine File: Truth Table Section)
TABLE keyword, (see Functional Simulator: Vector File)
tabs, (see white space)
TBL file, (see Functional Simulator: Watch File)
Telink, RE-10
text editor
invoking from A+PLUS, R3-3, U3-3
tildes in pin names, UBE-19, USM-49, R2-7
Title Block, R1-3
usage with MACRO and ADLIB, R1-4
TOIF, UBE-20, R1-43
TONF, R1-44
TOTF, R1-45
Transitions subsection, (see State Machine File)
transitions
order of evaluation, USM-14, USM-41
transition syntax
Case statement transitions, USM-55
conditional transitions, USM-54
unconditional transitions, USM-54
use of auxiliary variables, USM-41
Translator, (see Altera Design Processor)
tri-state buffer, UFrS-48
Truth Table Section, (see State Machine File)
TTL MacroFunctions, U1-5
Turbo-Bit, R1-4
Turbo-Bit
default value, UBE-18, R2-6, RB-3
restrictions, UBE-35, USM-41, R1-4, R2-6
toggling with LogicMap I, UBE-35, USM-41, R2-6

U
unconditional outputs, (see outputs: state machine outputs)

unconditional transitions, (see transitions)
unconnected pins, R4-3

A+PLUS User Guide

undefined logic levels, UFS-12
propagation of, UFS-48
Unused Resources Section, (see Utilization Report)
unused pins
in Utilization Report, R4-3
reserving for future use, R4-3
updates
software, U2-2, RE-4
uploading files, (see files)
UTILITIES, (see LogiCaps)
Utilization Report, U1-12, R3-10
clock groups, R4-5
exclamation points, R4-4
feedback groups, R4-5
latch numbers, R4-5, R4-6
macrocell numbers, R4-4
pins
assignments, R4-1
reserved, R4-3
unconnected, R4-3
unused, R4-3
product terms, R4-5
sample RPT files, R4-8-25
Sections
Buried Registers, R4-4
Header, R4-3
Latches, R4-4
Macrocell Interconnection Cross Reference, R4-6
Outputs, R4-4
Part Utilization, R4-5
Unused Resources, R4-4
\'

VCC, R1-17
VEC file, (see Functional Simulator: Vector File)
VECTOR command, (see FSIM commands)
vectors, (see Functional Simulator)
Virtual Logic Analyzer
buses
combining, ULA-15
creating, ULA-15, ULA-23
display of bus value, ULA-15
expanding, ULA-15
creating node list, UFS-75

Index Index-29

Index-30

Virtual Logic Analyzer — continued

cursors
locking together, ULA-20
moving, ULA-19
node cursor, ULA-8
toggling active and inactive, ULA-19
waveform cursor, ULA-9
data buffer, L A-2-3
searching, ULA-11
exiting, ULA-24
general description, ULA-2-3
help, ULA-18
highlighting breakpoints, ULA-22
invoking, UFS-84, ULA-4
nodes
adding, ULA-14, ULA-22
combining into buses, ULA-15, ULA-23
deleting, ULA-14, ULA-22
expanding buses into nodes, ULA-15, ULA-23
flashing, ULA-22
moving, ULA-14, ULA-23
selecting, ULA-22
subcommands
description, ULA-17-24
use in batch mode, ULA-4
vector clock cycle, ULA-9
waveform discontinuities, ULA-7
windows
description, ULA-5-6
flashing indicator, ULA-6
panning, ULA-8
splitting, ULA-11
zooming, ULA-7
VLA, (see Virtual Logic Analyzer)

w

Warning messages

A+PLUS, RM-41

Functional Simulator, U(FS)M-12

State Machine Converter, U(SM)M-11
Warranty, (see Extended Software Warranty)
WATCH command, (see FSIM commands)

A+PLUS User Guide

Index

WAL file, (see Functional Simulator: Plot File)
white space, UBE-35
in ADFs, R2-3
in SMFs, R2-46
Write Enable signal, UBE-33
inputs to bus primitives, UBE-21
Write Strobe signal
active low logic, UBE-31
effects on vector processing in FSIM, UFS-42
inputs to bus primitives, UBE-21

X

Xmodem, RE-10
XNOR, R1-18
XOR, R1-19

Index-31

A = D YA

ALTERA CORPORATION
3525 MONROE STREET, SANTA CLARA, CA 95051
(408) 984-2800

	03015869 altera.tif
	03015870.tif
	03015871.tif
	03015872.tif
	03015873.tif
	03015874.tif
	03015875.tif
	03015876.tif
	03015877.tif
	03015878.tif
	03015879.tif
	03015880.tif
	03015881.tif
	03015882.tif
	03015883.tif
	03015884.tif
	03015885.tif
	03015886.tif
	03015887.tif
	03015888.tif
	03015889.tif
	03015890.tif
	03015891.tif
	03015892.tif
	03015893.tif
	03015894.tif
	03015895.tif
	03015896.tif
	03015897.tif
	03015898.tif
	03015899.tif
	03015900.tif
	03015901.tif
	03015902.tif
	03015903.tif
	03015904.tif
	03015905.tif
	03015906.tif
	03015907.tif
	03015908.tif
	03015909.tif
	03015910.tif
	03015911.tif
	03015912.tif
	03015913.tif
	03015914.tif
	03015915.tif
	03015916.tif
	03015917.tif
	03015918.tif
	03015919.tif
	03015920.tif
	03015921.tif
	03015922.tif
	03015923.tif
	03015924.tif
	03015925.tif
	03015926.tif
	03015927.tif
	03015928.tif
	03015929.tif
	03015930.tif
	03015931.tif
	03015932.tif
	03015933.tif
	03015934.tif
	03015935.tif
	03015936.tif
	03015937.tif
	03015938.tif
	03015939.tif
	03015940.tif
	03015941.tif
	03015942.tif
	03015943.tif
	03015944.tif
	03015945.tif
	03015946.tif
	03015947.tif
	03015948.tif
	03015949.tif
	03015950.tif
	03015951.tif
	03015952.tif
	03015953.tif
	03015954.tif
	03015955.tif
	03015956.tif
	03015957.tif
	03015958.tif
	03015959.tif
	03015960.tif
	03015961.tif
	03015962.tif
	03015963.tif
	03015964.tif
	03015965.tif
	03015966.tif
	03015967.tif
	03015968.tif
	03015969.tif
	03015970.tif
	03015971.tif
	03015972.tif
	03015973.tif
	03015974.tif
	03015975.tif
	03015976.tif
	03015977.tif
	03015978.tif
	03015979.tif
	03015980.tif
	03015981.tif
	03015982.tif
	03015983.tif
	03015984.tif
	03015985.tif
	03015986.tif
	03015987.tif
	03015988.tif
	03015989.tif
	03015990.tif
	03015991.tif
	03015992.tif
	03015993.tif
	03015994.tif
	03015995.tif
	03015996.tif
	03015997.tif
	03015998.tif
	03015999.tif
	03016000.tif
	03016001.tif
	03016002.tif
	03016003.tif
	03016004.tif
	03016005.tif
	03016006.tif
	03016007.tif
	03016008.tif
	03016009.tif
	03016010.tif
	03016011.tif
	03016012.tif
	03016013.tif
	03016014.tif
	03016015.tif
	03016016.tif
	03016017.tif
	03016018.tif
	03016019.tif
	03016020.tif
	03016021.tif
	03016022.tif
	03016023.tif
	03016024.tif
	03016025.tif
	03016026.tif
	03016027.tif
	03016028.tif
	03016029.tif
	03016030.tif
	03016031.tif
	03016032.tif
	03016033.tif
	03016034.tif
	03016035.tif
	03016036.tif
	03016037.tif
	03016038.tif
	03016039.tif
	03016040.tif
	03016041.tif
	03016042.tif
	03016043.tif
	03016044.tif
	03016045.tif
	03016046.tif
	03016047.tif
	03016048.tif
	03016049.tif
	03016050.tif
	03016051.tif
	03016052.tif
	03016053.tif
	03016054.tif
	03016055.tif
	03016056.tif
	03016057.tif
	03016058.tif
	03016059.tif
	03016060.tif
	03016061.tif
	03016062.tif
	03016063.tif
	03016064.tif
	03016065.tif
	03016066.tif
	03016067.tif
	03016068.tif
	03016069.tif
	03016070.tif
	03016071.tif
	03016072.tif
	03016073.tif
	03016074.tif
	03016075.tif
	03016076.tif
	03016077.tif
	03016078.tif
	03016079.tif
	03016080.tif
	03016081.tif
	03016082.tif
	03016083.tif
	03016084.tif
	03016085.tif
	03016086.tif
	03016087.tif
	03016088.tif
	03016089.tif
	03016090.tif
	03016091.tif
	03016092.tif
	03016093.tif
	03016094.tif
	03016095.tif
	03016096.tif
	03016097.tif
	03016098.tif
	03016099.tif
	03016100.tif
	03016101.tif
	03016102.tif
	03016103.tif
	03016104.tif
	03016105.tif
	03016106.tif
	03016107.tif
	03016108.tif
	03016109.tif
	03016110.tif
	03016111.tif
	03016112.tif
	03016113.tif
	03016114.tif
	03016115.tif
	03016116.tif
	03016117.tif
	03016118.tif
	03016119.tif
	03016120.tif
	03016121.tif
	03016122.tif
	03016123.tif
	03016124.tif
	03016125.tif
	03016126.tif
	03016127.tif
	03016128.tif
	03016129.tif
	03016130.tif
	03016131.tif
	03016132.tif
	03016133.tif
	03016134.tif
	03016135.tif
	03016136.tif
	03016137.tif
	03016138.tif

